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Abstract

We propose an easily computable measure called the Major Complexity Index (MCI) that
captures the latent skills imparted by various college majors. Specifically, we apply the Method
of Reflections, which is an iterative algorithm originated in the context of international trade, to
parse through a major-to-occupation flow network and formulate a scalar measure that encap-
sulates the relative skill complexity of majors that is distinct from existing metrics pertaining
to major specificity. Our complexity measure appears to be a potent factor in explaining
individual earning and employment differences across college majors, and the results remain
robust to confounding factors and aggregation issues. Further results suggest that the MCI
can not only account for current income disparities but also predict future major-level earning
growth, a feat beyond the capability of typical major specificity indices. Additional exercises
reveal that the MCI strongly relates to advanced skills such as critical and analytical thinking,
as well as abilities to analyze and solve quantitative, practical, and complex problems.
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1 Introduction

The return to education varies widely across fields of study in college (Altonji et al., 2012, 2016;
Lovenheim and Smith, 2023)). While some of this disparity is certainly attributed to the selection
process (Arcidiacono, 2004; [Webber, 2014)), a significant portion of it stems from the different
skillsets acquired in various academic programs (Kirkeboen et al., 2016; Hastings et al., 2013; Daly
et al., [2022; |Andrews et al., 2017; Bleemer and Mehta,, 2022). In other words, not all majors are
created equal when it comes to equipping students with marketable skills. As Hemelt et al.| (2021)
aptly point out, each college major can be viewed as a “portable bundle of skills”, especially from
employers’ perspectives. Thus, understanding the nature and implications of these skill bundles is
key to unraveling the puzzle of major-dependent return on education.

The diversity in skills acquired across academic disciplines naturally leads to varying occupa-
tional destinations for graduates, and can potentially drive the differential returns to college majors
(Lovenheim and Smith, 2023)). For instance, a petroleum engineering degree can pave the way to
lucrative careers as petroleum engineers, an opportunity often not as readily accessible to students
from other fields of study. This intersection between college majors and subsequent occupational
outcomes contains rich information to be exploited, and can be seen as a testament to the matching
of multifaceted skills.

In this paper, we extend recent development in the space of quantifying major skill bundles and
specificity (Altonji et al., [2012; Blom et al., 2021} |Leighton and Speer, [2020; Hemelt et al., 2021])
by proposing a novel index derived from the major-to-occupation network. Specifically, we utilize
the “Method of Reflections” technique, first introduced by Hidalgo and Hausmann| (2009) in the
context of international trade and economic growth! , and develop a unique index called the Major

Complexity Index (MCI) which harnesses the network structure between majors and occupations.

I'This method was initially designed to examine the bipartite network between countries and their exported goods,
aiming to quantify the latent production capacities and technologies that enable a country to produce its observed
basket of exports. Following its introduction, this technique and the resultant metrics of economic complexity (ECI)
have been extensively utilized to scrutinize the influence of economic structures on outcomes including economic
growth, income inequality, greenhouse emissions, employment, and the spatial concentration of economic activities.
See [Hidalgol [2021; Balland et al., 2022 for a detailed summary of its applications.



The Method of Reflections capitalizes on the richness of information contained within the
major-to-occupation network, extracting the latent structure of necessary skill sets through an
iterative algorithm. The fundamental idea is that occupations requiring a complex skill set tend to
be associated with majors that cultivate such skills, and likewise, majors that equip students with
more complex skills often lead them to occupations that demand a higher degree of proficiency.
According to this paradigm, the complexity of majors and occupations reciprocally define each
other, and this intrinsic link demands a recursive construction of the complexity index, reflecting
the intricate interplay between majors, skills, and occupational demands.

To our knowledge, this study represents the first application of the Method of Reflections within
the realms of education and labor markets, heralding a novel approach to quantify the skill bundles
of college majors. In deference to the original complexity economics literature initiated by Hidalgo
and Hausmann (2009), we refer to this index as major “complexity” of skills, as it encapsulates the
intricacies and nuances of thousands of teaching and learning activities embedded in the knowledge
and skill production process, as well as the sophisticated ways these building blocks combine to
form the holistic skill sets of individuals.

In contrast to existing major specificity indexes, such as the occupational Herfindahl-Hirschman
Index (HHI) which summarizes the occupation concentration without accounting for the type of
occupations associated with each major (Blom et al., [2021), our approach utilizes the informa-
tion embedded in an entire bipartite major-to-occupation matrix to reveal an underlying tripartite
structure, connecting college majors to the skills they cultivate, and occupations to the skills they
demand. As a result, the MCI effectively captures the relevant neighboring information within
the network, allowing majors with the same degree of specificity to have markedly different
complexity rankings. Consider the example of Petroleum Engineering and Mathematics Teacher
Education. Both these majors are highly specialized according to the HHI. However, their MCI
rankings diverge significantly. Petroleum Engineering, which is associated with occupations rarely
accessible to majors of low complexity, and consequentially is connected with other complex

majors, yielding a high MCI rank (14/159). In contrast, Mathematics Teacher Education, while



also specialized, leads students to occupations that are commonly accessible and thus is connected
to other low-complexity majors, resulting in a lower MCI rank (125/159).

Our empirical investigation mainly employs individual-level data from the American Commu-
nity Survey (ACS), spanning from 2009 to 2019. This large pooled dataset enables us to construct a
representative bipartite major-to-occupation network, which serves as the foundation for our Major
Complexity Index. Through extensive analyses, we investigate the relationship between the MCI
and labor market outcomes across individuals including earnings and employment differentials.
Our findings provide compelling evidence that the MCI captures significant aspects of college
majors that influence both outcomes for graduates. Specifically, a one standard deviation increase
in the MCI corresponds to an 8% increase in salary and a 1.56% boost in employment.

An intriguing finding of our study is that the explanatory power of the MCl is nearly orthogonal
to that of existing metrics pertaining to major specificity such as the HHI, indicating that the
MCI is not merely a recapitulation of existing measures. This is in a way a very surprising
outcome, considering that the data utilized to compute the specificity indices, like the HHI, and
the complexity index are entirely identical. Both indices employ the distributional differences in
occupational outcomes across various majors to infer certain aspects of skill acquisition. Never-
theless, our results indicate that the Method of Reflections successfully extracts information from
a major-to-occupation network that is distinct and complementary to what is measured by existing
methods. This finding paves a new way of utilizing occupational placements of college graduates
to understand the variations in skill acquisition across different majors.

It is worth noting that, even within the same major categories (e.g., Science, Business, etc.)
and occupational groups (SOC2), majors with higher complexity still yield higher income returns.
Additional analyses demonstrate the robustness of the MCI in explaining labor market outcomes, in
relation to aggregation issues and confounding factors. Lastly, our heterogeneity analysis indicates
that the complexity of majors has lasting impacts on career outcomes, even though the returns may
not be evenly distributed across different demographic groups.

Furthermore, drawing parallels to the work of |Hidalgo and Hausmann| (2009), who demon-



strated a robust correlation between the Economic Complexity Index (derived from country-to-
exported-product networks) and a country’s GDP growth, we perform a prediction of future return
to college majors using the MCI. Our findings uncover a significant association between the
annually constructed MCI and future earnings linked to different majors. Specifically, a one
standard deviation increment in the current MCI is correlated with a salary increase of 2.08%
in five years’ time, and 2.84% in ten years’ time. In contrast, the HHI, while highly correlated
with current income level, fails to demonstrate a comparable predictive power for future changes.
This differentiation further accentuates the unique insights the MCI offers in understanding both
present and future earning dynamics across academic majors.

To deepen our understanding of what the MCI measures, we merged the MCI computed from
the ACS with major-level characteristics derived from the National Survey of Student Engagement
(NSSE). The analysis reveals that high-MCI majors tend to attract students with superior pre-
college academic qualifications, as evidenced by higher SAT scores. Furthermore, high-MCI ma-
jors appear to be more intensive and demanding as students in these majors typically devote more
time preparing for classes, completing problem sets, and working on longer written assignments.
Interestingly, when it comes to the knowledge and skills acquired through college education,
students in high-MCI majors frequently report marked development in thinking critically and
analytically, as well as enhanced abilities to analyze and solve quantitative, practical, and complex
problems. However, there seems to be no correlation between the MCI and basic skills such as
written and spoken communication, which are presumably developed mainly through primary and
secondary education. It is also worth noting that, the MCI exhibits a negative correlation with broad
general education, and no correlation with job-specific knowledge and skills, which suggests that
the MCI transcends the traditional distinction between general and job-specific skills.

Though the MCI correlates with measures of student ability, its power in explaining labor
market outcomes remains robust and consistent even after controlling for a range of individual
characteristics. This includes not only markers of student ability, but also factors pertaining to

family background. We substantiate this finding by integrating our ACS-derived MCI values with



data from the National Longitudinal Survey of Youth 1997 (NLSY97). These findings highlight the
MCT’s potential as a valuable tool for comprehending the complexity of the links between college
majors, skills cultivation, and labor market success.

The rest of the paper is organized as follows: Section 2 summarizes the literature and highlights
our connection to the most relevant body of works. Section 3 introduces the Method of Reflections
in the context of a major-to-occupation network. Section 4 details the data sources. Section 5
presents our empirical results, and Section 6 discusses important policy implications, limitations,

and possible future extensions. Supplementary materials are included in Appendices A-G.

2 Literature

To comprehend the variations in skills taught across different majors and examine the subsequent
labor market consequences, prior research has focused on the specificity of majors concerning their
resulting occupational placements, since there can exist trade-offs between specialized skills that
target a set of occupations and general skills that, though less productive, can easily be transferred
across occupations (Silos and Smith, 2015). For instance, |Altonj1 et al. (2012); Martin (2022)
utilize the proportion of students from each major that ended up in the top three occupations (Top3).
Pursuing a more refined approach, Blom et al.| (2021) compute the Herfindahl-Hirschman Index
(HHI) to measure the concentration of occupational placements for each major. These studies
highlight that majors with higher specificity, that is, those leading to a concentrated range of
specific occupations, yield a higher return on investment. Kinsler and Pavan| (2015) investigates
the monetary returns of three broadly defined college majors. Utilizing a survey question of the
relatedness of one’s job to the undergraduate field of study, they implement a dynamic structural
Roy model with two types of human capital and find that individuals tend to earn more when
their occupation is closely aligned with their college major. Recently, |Leighton and Speer| (2020)
proposed an alternate measure of major specificity utilizing the Gini coefficient that represents the
distribution of returns to majors across various occupations. Their findings suggest that majors

with higher Gini coefficients, indicating uneven earnings across occupations, are more specific and



experience higher labor market returns.

While these studies underscore the importance of a major’s skill specificity, they overlook the
nature of the occupations into which these majors channel their students. For instance, consider
two very specialized majors: Computer Engineering and Elementary Education. Both of these
majors exhibit a high degree of specificity, leading to high scores in the Top3 share, HHI, and
Gini coefficients. However, the occupations they funnel their graduates into are very different. A
vast majority of Computer Engineering graduates work as computer engineers, while Elementary
Education students predominantly become elementary school teachers. The specificity indices
employed in these studies fail to capture such critical distinctions between the occupations that
different majors feed into. This highlights a need for more nuanced measures that consider not just
the occupation concentration or wage dispersion, but also the nature of the occupations related to
each major. However, though it is intuitively clear that occupations such as computer engineers
and elementary school teachers are distinctly different, articulating these differences can pose
a significant challenge. In this paper, we introduce a novel approach to tackle this issue by
exploiting the rich information embedded in a major-to-occupation flow network. Specifically,
we characterize occupations based on their associations with different majors, while the majors are
characterized by the occupations they are linked to.

Overall, our work contributes to a rich literature on skill formation in college. This literature
has been confronted with important challenges that we believe our approach is able to circumvent.
Firstly, knowledge and skills produced in majors are unobservable and extremely difficult to quan-
tify, particularly along the dimensions that are of interest to employers (with [Hemelt et al.|[2021
being a notable exception, as detailed below). For instance, how do we incisively measure the
programming skills that students can obtain from an economics major on average?

Secondly, the skills deemed significant within the labor market are presumably of high di-
mensionality, as explored by Hemelt et al.| (2021). Indices specific to academic majors, such as
the HHI or the MCI, can delve into the nature of these skills without necessitating an explicit

model of their dimensionality. Meanwhile, in instances where these skills are explicitly modeled,



they are typically defined within relatively low dimensions, predominantly based on intuitive
understandings. As an illustrative example, Cunha and Heckman| (2007)) identify two principal
dimensions of skills—cognitive and non-cognitive—via a factor model in their seminal work.’
For reasons of computational feasibility, |Kinsler and Pavan| (2015) focus on only two particular
types of human capital, namely mathematical and verbal. While these dimensions may indeed
represent critical distinctions in skills, adopting a narrow focus on them could be misleading within
the context of post-secondary education and occupational outcomes. For instance, leadership—a
specific skill within the non-cognitive domain—has been documented to have predictive capacity
in terms of potential earnings (Kuhn and Weinberger, [2005). Recent work by Deming| (2017)
underscores the growing importance of social skills within the labor market.

Similarly, another important yet under-explored aspect is the complementarity among skills
(Cunha et al., 2006). A job task often requires a combination of skills. For example, to be a
financial engineer, one not only needs to be skilled in financial econometrics and programming
but also in management and communication that complement the technical background and help
to improve job performance. Even if we fully observe the skill production process, with high
dimensionality, it rapidly becomes impossible to estimate the complementary effects of every
combination of fine-grained skill categories. For instance, Hemelt et al.|(2021) exploit job vacancy
data that is free from occupational sorting and can describe majors by a vector of 11 exclusive skill
composite categories and 1,000 most frequently listed skills. However, with finite data variations,
it is difficult to fully explore the complementary effects among the detailed skill categories.

In brief, the challenges described above make our proposed methodology particularly appeal-
ing. Rather than striving to resolve these issues, our approach seeks to deftly circumvent them.
The “building-block” model, consisting of a tripartite network of majors-skills-occupations, en-
capsulates the high-dimensional and combinatorial nature of skills. As theoretically demonstrated
in Hausmann and Hidalgo (2011)), the iterative procedure of the Method of Reflection can uncover

the underlying tripartite structure hidden within the bipartite network. Consequently, the MCI

Note, the factor analysis approach of Cunha and Heckman (2007, and subsequent papers) can, in principle,
accommodate a broader dimension of skills.



preserves the crucial structural aspects of skill matching, while its computation sidesteps the need
to explicitly model the entirety of the skill structure. Instead, the calculation of the MCI directly
reveals the relative skill complexity value of college majors. It achieves this by exploiting the match
between students from majors and subsequent occupational placement. In effect, this methodology
allows us to draw insights from the complexity of skills without becoming mired in their intricate
dimensions—a key advantage in navigating the landscape of education and labor market research.

There are surprisingly few easily-computable quantitative descriptions of college majors, with
only a handful of occupation-based major specificity measures such as Top3 share (Altonji et al.,
2012), HHI (Blom et al., [2021), and Gini coefficient (Leighton and Speer, 2020) being among the
available tools.? Surely, the characterization of majors goes beyond the conventional delineation
between general and specific skills. For instance, Hemelt et al.| (2021) leverage job ads data to
illustrate majors via a detailed skills demand vector. They reveal significant variations in both skill
demand and earnings across various majors and regions, leading to the conclusion that majors can
be viewed as portable skill bundles. Nonetheless, such data is not typically easily accessible.

Our comprehensive Major Complexity Index (MCI) significantly contributes to this landscape
by offering a simple-to-compute measure that requires minimal data. Crucially, it doesn’t rely on
student-reported data on major features as used in Kinsler and Pavan| (2015). This method builds
on recent advancements in this field by exploiting the rich information hidden in the major-to-
occupation network, thereby complementing existing structure-based approaches (see, for exam-
ple, /Altonji et al.[|2012} Kinsler and Pavan|2015). In this manner, it enhances our understanding
of the otherwise unseen skill production process associated with college majors. Moreover, the
MCI can serve as an informative and convenient reference for a range of stakeholders. Prospective
students can use it as a tool in choosing their college majors, and education administrators can

draw upon it in strategic planning, particularly in resource-limited environments.

3There is also a curriculum-based approach that draws upon transcript data and summarizes major based on credits
or GPA across subjects. See, e.g.,[Hamermesh and Donald|(2008));|Silos and Smith|(2015)); Light and Schreiner|(2019).



3 Method

Suppose we have .# college majors and ¢ occupations. Let M be a . x _# flow matrix that
represents the majors to occupations network. We consider the flow matrix to be a binary matrix
where M, ; = 1 if major m places a significant proportion of students in occupation j, and M,, ; =0
otherwise. Using the Method of Reflections introduced by Hidalgo and Hausmann (2009), we
iteratively calculate the value for each major and occupation, respectively. To illustrate the method,

suppose there are four majors and four occupations, linked in a network as shown in Figure[l]

m2 kmo Engineering Engineer ki1

0.45 0.5 O » 0.45

Education HS Teacher
0.32 0.5 Q 0.33
Computer Science
0.39 0.4 0.3
History Librarian
0.24 0.1 :O 0.1

Figure 1: Example

We initiate the process with an initial value, denoted as k¢, that characterizes the skills
associated with each major. The particular choice of this initial value has minimal impact on
the converged Major Complexity Index (MCI) as we discuss below. As an illustrative starting
point, let’s consider this initial value to be the occupational Herfindahl-Hirschman Index (HHI), as
utilized in Blom et al. (2021)), which is recognized for capturing the specificity of majors. Majors
that concentrate most students to a small set of occupations are considered specialized, and those

that distribute graduates evenly across many occupations are considered general. However, the HHI
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does not factor in the detailed relationships between individual majors and occupations, thereby
not accounting for what type of occupations are associated with each major, and ignores valuable
information from other neighboring majors that map into the same occupations in the network.
Using the examples in Figure |1, the HHI of Engineering and Education majors are both 0.5.
The difference is that Engineering can lead students to become Engineers, which is not easily
accessible to students from low-HHI majors like History. Meanwhile, Education sends students to
High School (HS) Teachers and Clerks, both accessible from History. Nonetheless, using the HHI
directly, Engineering and Education are both ranked in first place, followed by Computer Science,
and then History.

To incorporate the accessibility of occupations within the network, we exploit an iterative
procedure called the Method of Reflections. We first use the initial index described above, &, o, to

calculate the complexity of each occupation, k; ; in the first iteration (b = 1), as

1
kji = D_ZMm,j ko
J m

where D is the node degree (i.e. the number of major links) of an occupation j, and again M,, ; = 1
if major m places a significant proportion of students in occupation j, and O otherwise. See the
solid arrow at the top of Figure 1 for a graphic illustration of this iteration from ko to k1. As an

example, for j = HS Teacher,

~ 0x05+1x054+1x04+1x0.1  05404+0.1

; ~ 0.33.
& 3 3

That is, there are three majors, Education, Computer Science, and History that place a significant
proportion of students as HS Teachers (D; = 3, M,, ; = 1 only for those majors), and the average
HHI (k) of these three majors is calculated to be 0.33. The same calculation can be carried out
for all occupations j € ¢, as shown in Figure [l k;; column. Using examples in this network,
Engineer and Clerk are both connected to two majors, but the HHI of majors that are linked to

Engineer is, on average, greater than that for Clerk. As a result, Engineer is ranked higher than

10



Clerk in this iteration. Importantly, majors are connected to one another through the occupation
nodes within a network, and this intermediate step k; ; is essential to reflect such connections.
We then iterate back to the major side (b = 2) to update the index of each major to k,, >, using

those values obtained in k; ; as

1
km,Z = D_ZMmJ kj71 .
mj

where D,, is the node degree (i.e. the number of occupation links) of a major m. See the dashed
arrows on the top of Figure [I] for a graphic illustration of this iteration. Using the example of

m = Education,

033403

~0.32
2 b

km,2

since Dy, =2, and M,, ; = 1 for j € {HS Teacher, Clerk} as Education major is only linked to
these two occupations. Intuitively, the average score of k; ; for occupations linked to Education is
0.32. Recall, k; ; captures the average initial value (HHI in this case) of majors that are connected
to an occupation. Following this logic, k> is basically the average of average HHI of majors
that are connected to one another through common occupational outcomes. What’s embedded
in this averaging process is the adjustment of the initial major-level characteristics (e.g., HHI)
by occupation accessibility. As shown in Figure |1} the index of Computer Science is updated
from k, o = 0.4 to k,, » = 0.39, while the adjustment for the Education major is from k,,, o = 0.5 to
k2 =0.32 in this iteration. As aresult, Computer Science is now ranked higher than the Education
major, for the reason that Computer Science can send students to occupations, such as Engineers,
that are difficult to get into from low-HHI majors, and in turn, it is connected to other majors that
are relatively more specific in terms of skills taught on average.

It is important to note that the updated index at the major side is no longer identical to the initial
values. This is because the iterative procedure reflects the deeper and more intricate connections in
the major-to-occupation network. This iterative process, along with the information passed through

the network, leads to the final MCI value that is almost orthogonal to the initial HHI values. In
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other words, MCI and HHI, though originating from the same data, provide significantly different
insights into the complexity of the skills associated with different majors.* As we show in the
empirical section, the converged MClI starting from the HHI is almost orthogonal to the initial HHI.
Furthermore, as we discuss below, the particular choice of initial value has minimal impact on the
converged value. Henceforward, in honoring the Complexity Economics literature, we refer to the
updated index on the major side as a measure of major complexity, given that it encapsulates the
intricacies and nuances of thousands of teaching and learning activities embedded in the knowledge
and skill production process, as well as the sophisticated ways these building blocks combine to
form the holistic skill sets of individuals (Hidalgol 2021}).

While we stop the illustration at b = 2 (where b refers to the number of iterations), we iterate
on this procedure for each major and occupation according to equations (1) and (2), respectively,

until the major ranking exhibits full convergence:

Jkjb-1, 6]

b|H

mb—
Jb—

mb 1- (2)

= |

ZM
i€t
;L

The complexity index on the occupation side, k;;, for any odd number b, takes the average of the
complexity scores of all majors linked to this occupation from the previous iteration, k,, ;1. They
are then used to compute the complexity index on the major side in the next iteration, ,, 511, which
is the average of k; j, for all occupations linked to major m. The underlying idea is that occupations
that require a complex set of skills are linked to, on average, majors that teach complex skills, while
majors that equip more complex skills can send students to occupations that are more demanding.

Thus, the complexity index has to be constructed recursively. Upon convergence, we obtain the

“The notion of network distance plays an important role here. In the context of our major-to-occupation network,
majors that are closely connected share information more quickly than those further apart. In our example, the
History major is only 2 hops away from the Education major as they are both connected to the Clerk occupation.
However, for the History major to pass information to Engineering, the shortest path is 4 hops. However, given
enough iterations, information from all connected nodes in the bipartite network is incorporated, thereby providing a
robust and comprehensive measure of the complexity of skills associated with each major.
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Major-Complexity-Index (MCI) on the major side, which is an accessibility-adjusted measure
taking into account relevant neighboring majors that map students into the same occupations.
The intuition is that by utilizing the major-to-occupation bipartite network, we are able to shed
light on the underlying tripartite network connecting college majors to the skills they produce, and
occupations to the skills they require, which is referred to as the “building-block™ model according
to Hidalgo and Hausmann| (2009); Hausmann and Hidalgo| (2011)). In Appendix |A} we elaborate
on how a tripartite network of major-skill-occupation reduces down to a bipartite major-occupation
network. The goal of the MCl is to infer the relative complexity of the skill set in each major based
on the “building-block” model from the information contained within a bipartite flow network.

To implement this procedure, we need to a) specify the initial value of k,, o, and b) construct an
informative major-to-occupation network M. We provide a brief explanation of these preparatory

steps below and leave the detailed discussion to Appendix [B].

3.1 Initial Value

When applying the Method of Reflection to a major-to-occupation network, it is necessary to
specify an initial value, k, o, for each major. We find that the specific initial values do not
affect the standardized MCI following convergence. Provided that we start with an initial vector
that ranks the majors according to skill specificity, the MCI invariably converges to the same
value. Therefore, in our main analysis, we use the HHI of each major, constructed from the raw
major-to-occupation network, as the initial value with no sensitivity of the results to this choice. In
Appendix we show that the MCI initialized by the Gini coefficient and the share of Top-3 oc-
cupations consistently converge to the same values. This result closely relates to the interpretation
of MCI as the eigenvector corresponding to the second eigenvalue of a major-to-major distance

matrix, an idea introduced in Cristelli et al.[(2013). We elaborate on this in detail in Appendix

3.2 Network by Revealed Comparative Advantage (RCA)

13



The most important ingredient of the recipe is an informative major-to-occupation network M,
where M,,; = 1 if a link is recorded from a major m to an occupation j, and M,,; = 0 otherwise.
To construct this binary matrix, following the original implementation by Hidalgo and Hausmann
(2009), we compute the Revealed Comparative Advantage (RCA) of a major m for an occupation
jas

Nm]/]Vm

RCA,,j = NN

where N,,; is the number of graduates from a major m who found a job in an occupation j, Ny, is
the total number of graduates from major m, N; is the total number of graduates in occupation j,
N is the total number of graduates in the network.

In the binary matrix M, a link between major m and occupation j is recorded (i.e., M,,; = 1)
if RCA,,; > 1. Intuitively, a major m forms a link to an occupation ; if and only if the fraction
of its graduates placed in j is higher than the average across all majors. The matrix formulated
by the RCA represents the relative value of a major by evaluating the comparative advantages it
has over others in terms of job placements for its graduates. More explicitly, RCA for a major in
a particular occupation is computed by comparing the share of graduates from this major in this
occupation relative to the share of all graduates in this occupation. A high RCA indicates that a
major has a comparative advantage in placing its graduates into a specific occupation, which could
be interpreted as this major equipping its students with a specific set of skills highly demanded by
this occupation. Therefore, the RCA matrix captures the unique relationships between majors and
occupations, shedding light on the distinct skill sets learned from different majors and how they
are valued in various occupations. This, in turn, enables us to create the Major Complexity Index
(MCI) that reflects the complexity of skills taught in different majors based on the dynamics of a
major-to-occupation network.

The RCA approach offers several advantages over alternatives. We provide an in-depth com-
parison with other approaches in Appendix Here we highlight two important features. First,

one important caution in interpreting the Method of Reflections is the assumption that major-to-
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occupation mappings are primarily (if not entirely) based on the skills match. That is, for any
major occupation pair, a link exists if and only if the required skills are matched. If some students,
say by virtue of family-resource, end up in occupations that they do not qualify for in terms of skill
requirements, it is then problematic to infer major values using job placements. The RCA matrix
alleviates such a concern, and is notably robust against such a mismatch, by removing excess
variation and focusing only on significant presences and absences (Hidalgo and Hausmann, [2009;
Hidalgol 2021} Balland et al., 2022). Second, the RCA is agnostic to the population size of nodes.
If a fixed count were used as a trimming threshold, a larger major like Engineering would likely
form links with every occupation, while a smaller major like Archaeology would potentially form
no links at all. The RCA approach allows every major to have advantages in certain occupations
and disadvantages in others, as it uses relative measures. This feature makes it a more robust and
insightful measure for our purposes, as it concentrates on the most important information from a

major-to-occupation network without being influenced by the sheer size of the majors.

3.3 Comparison to Other Major Indices

In the realm of higher education economics, there are several major-level indices designed to
capture valuable insights about the skills taught across different academic disciplines. However, the
MCl is distinctive in its approach, specifically leveraging the major-to-occupation network. Indices
like the share of Top-3 occupations (Altonji et al., 2012) and Herfindahl-Hirschman Index (Blom
et al., 2021)) measure the concentration of occupational placements for each major. While they do
measure the skill specificity accurately, both these measures ignore the nature of the occupations
into which the majors place their students. That is, each occupation, in their analysis, is treated as a
uniform, undifferentiated node. For example, in our data, both Computer Engineering and General
Education exhibit a Herfindahl-Hirschman Index (HHI) of 0.35, which suggests that they are
equally highly concentrated majors. However, a closer look at the specific occupations these majors
feed into reveals a significant difference. Graduates from Computer Engineering are primarily

concentrated in Computer Occupations, such as Programmers. In contrast, the majority of General
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Education graduates become Preschool, Elementary, Middle, Secondary, and Special Education
Teachers. Since Top-3 share and HHI do not take into account the links in the major-to-occupation
network, they ignore such differences between the occupations into which different majors lead.

While it is intuitively evident that Computer Occupations and Teachers are markedly different,
formulating a clear characterization of these differences can be challenging. The MCI solves
this problem by characterizing occupations based on their linkages to the majors. For example,
Computer Occupations are predominantly linked to majors such as Computer Science, Electri-
cal Engineering, and Mathematics. Conversely, Teachers are linked to English Language and
Literature or Liberal Arts. This approach leverages the inherent relationships between majors and
occupations to gain insight into the nature of different career paths. Thus, the MCI provides a more
nuanced representation by incorporating information about the occupations to which each major
leads, an aspect often overlooked in other indices. Because majors and occupations mutually define
each other in this paradigm, the calculation of the MCI naturally requires an iterative procedure.
This iterative process allows for an increasingly useful extraction of information from the career
outcomes associated with different majors.

The index based on the Gini coefficient, as put forth by Leighton and Speer| (2020), represents a
recent endeavor to define the specificity of majors by gauging the inequality in returns to education
from different majors across different occupations. This index differs fundamentally from the MCI
as it draws from a different data source (i.e. wage and salary) and concentrates particularly on the
concept of major specificity. The calculation of the Gini coefficient requires income data for each
occupation within every major, necessitating the use of an aggregate, coarse-grained categorization
of majors and occupations. This is equivalent to presupposing that the major-to-occupation net-
work is fully connected and there are no missing links between majors and occupations.> Mean-
while, the MCI capitalizes on the significant presences as well as absences, extracting valuable
insights from when the links are missing. In subsequent sections, we demonstrate that the MCI

exhibits stronger explanatory power than the Gini index in accounting for earning and employment

SFor instance, if Nursing is in the major list, then every occupation needs to have some workers who graduated
from Nursing.
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differences across individuals. Nevertheless, when both indices are accounted for, neither loses its
statistical significance, indicating that they capture distinct aspects of college majors that matter
for the labor market outcomes.

Hemelt et al.| (2021) describe majors by the skills they impart, exploiting online job adver-
tisement data that contains both required skills and degree fields for occupations, and conclude
that majors can be thought of as a portable bundle of skills. Although this approach of explicitly
identifying skills embedded in each major holds numerous advantages, such data isn’t readily
available. On the other hand, the data requirements for calculating the MCI are relatively minimal.
The MCI calculation necessitates only the observation of the graduates’ occupational distribution
for each major, without any additional information. This feature greatly enhances the practicability
and accessibility of the MCI as a tool for characterizing and evaluating the value of different

academic majors. We demonstrate and discuss the potential usage of MCI in subsequent sections.

4 Data

Our primary data is derived from the American Community Survey (ACS) covering the period from
2009-2019, which provides individual-level information on schooling choices (including college
majors from 2009 onward) along with occupational outcomes, both of which are vital to creating
a bipartite major-to-occupation network.® To learn about college majors, we carefully restrict our
sample to individuals with only a Bachelor’s degree, without double majors, who are currently
not enrolled in school. Following Hemelt et al.| (2021), we further limit our sample to full-time,
full-year (FTFY) workers, who have worked at least 40 weeks a year and at least 30 hours a week
in the past 12 months. This forms the basis for the MCI construction and earning analysis.

To construct the major-to-occupation network and subsequently the Major Complexity Index
and other major specificity indexes, we follow Leighton and Speeri (2020) and focus on individuals

aged 25-35 to prioritize the occupational placements of recent graduates as well as to concentrate

%We use the ACS data obtained from IPUMS USA, University of Minnesota (www . ipums . org).
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on skills obtained during collegiate studies, as opposed to post-graduate training.” Our MCI is
primarily constructed from a network that consists of the detailed ACS major (degfieldd) and
occupation (SOC4) categories.® To minimize noise resulting from spurious major-to-occupation
linkages, we stipulate a minimum of 100 individuals per major and occupation. After applying
these sample restrictions, we are left with 651,638 observations, enabling us to link 159 majors
to 97 occupations.” The summary statistics of this sample are presented in Table [1, Panel A.
Approximately half the sample is female, 80% are White, and around 9% are Hispanic. The
potential experience, computed by subtracting 22 from age (as we only consider bachelor’s degree
earners), averages about 8 years, ranging from 3 to 13 years.

The earnings analysis is conducted on all individuals aged between 25 and 60 who have
graduated in one of the 159 majors for which we have MCI and other major-specificity measures.
We set the lower limit of the annual income (in 2010 dollars) at $500, leaving us with 1,999,140
observations, as demonstrated in Table[I] Panel B. This sample maintains a similar gender and race
ratio to Panel A, though the proportion of Hispanic individuals is slightly lower (approximately
7.5%). The potential experience is higher on average by construction. The average annual income
in this sample is about $71,199, ranging from $500 to $654,737 (with no top coding).

For the employment analysis, we eliminate the aforementioned bottom coding and Full-Time

Full-Year (FTFY) restrictions and instead create an indicator variable denoting FTFY employment

7Using the MCI constructed from a major to occupation network with individuals aged 25-30 instead of 25-35
does not alter the results. See Appendix [D] Table D.T|for details.

8In ACS, majors are measured at both a coarse level (variable degfield), and a detailed level (variable degfieldd).
The coarse level corresponds to the CIP2 level while the detailed level typically aligns with the CIP4 level. However,
sometimes it falls between CIP2 and CIP4. For instance, the major number 2409 in degfieldd (Engineering Mechanics,
Physics, and Science) can be mapped to three CIP4 majors - 14.11 (Engineering Mechanics), 14.12 (Engineering
Physics), and 14.13 (Engineering Science) within the CIP2 category - 14 (Engineering). In some other cases, it is
in-between CIP4 and CIP6. For instance, the major number 2311 in degfieldd (Social Science or History Teacher
Education) can be mapped to two CIP6 majors - 13.1317 (Social Science Teacher Education) and 13.1328 (History
Teacher Education) within the CIP4 category - 13.13 (Teacher Education and Professional Development, Specific
Subject Areas). Using CIP4 in such a case would result in a loss of important heterogeneity, such as training of
teachers across different subject areas. To minimize matching errors, we rely on ACS major variables, rather than
matched CIP.

9 At the CIP2 level, majors that are not in ACS include 28) reserve officer training corps (jrotc, rotc). 32) basic
skills. 33) citizenship activities. 34) health-related knowledge and skills. 35) interpersonal and social skills. 36)
leisure and recreational activities. 37) personal awareness and self-improvement. 53) high school/secondary diplomas
and certificates. 60) residency programs.
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status, applicable to individuals aged between 25 and 60, who graduated in one of the 159 majors
we identified. Following these adjustments, our sample consists of 2,591,343 observations, as
indicated in Table[I] Panel C. The sample characteristics align closely with those of Panel B, with
around 80% of individuals working full-time.

To ensure the robustness of our main results and further comprehend the Major Complexity
Indices, we utilize pooled data from the National Survey of Student Engagement (NSSE) spanning
the years 2005 to 2011. This dataset provides rich student-level data, detailing the variety of
assignments and tasks carried out across majors as well as information pertaining to student back-
grounds. We calculate the major average of SAT scores, parental education, and the percentage
of international students for each major, along with major characteristics surveyed from students
such as the development of knowledge and skills through their college education and the number
of hours spent on coursework. These computations are performed at the CIP2 level and are merged
with our ACS sample. Overall, we manage to match 22 majors (out of 22 in the NSSE; out of 38
coarse-level majors in ACS) using the CIP2 between the two datasets. For additional details about
the dataset and the matching process, please refer to Appendix [F|

To bolster the robustness of our main results further, we integrate the MCI computed from
the ACS with the National Longitudinal Survey of Youth 1997 (NLSY97) dataset, which collects
extensive information about individuals’ educational experiences and labor market outcomes to-
gether with important proxies of innate abilities and academic preparations prior to college. We
successfully match 36 majors (out of 37 in the NLSY97; out of 38 coarse-level majors in ACS)
using the CIP2 between the two datasets. More details about the dataset and the matching process

can be found in Appendix [G|

5 Results

The empirical results are organized into four subsections. We elaborate on the intuition of the MCI
in Section 5.1, and present individual-level regression results for both earning and employment in

Section 5.2. In section 5.3, we conduct a major-level analysis of MCI in predicting future income
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growth. Lastly, Section 5.4 investigates the relationship between the MCI and the detailed major

characteristics from the NSSE.

5.1 MCI versus Previous Measures

As explained in the previous sections, based on the “building-block” model, the Major Complexity
Index (MCI) constructs the complexity measure of acquired skills by recursively considering
the complexity level of other majors that map into the same occupations. By doing so, the
MCI incorporates information from the whole bipartite major-to-occupation flow network, and
computes a comprehensive scalar measure of college majors that captures the latent skills taught
in different majors and that are required by different occupations.

Figure [2]left panel displays the top 35 majors based on the occupational HHI (index before the
iteration). Majors like nursing, education, engineering, computer science, and accounting have a
high value of HHI which indicates these majors funnel a majority of their students into a relatively
narrow range of occupations, suggesting a high level of specialization. They are regarded as
highly specialized majors which are consistent with other major specificity measures like the Gini
coefficient (Leighton and Speer,, 2020) or Location Quotient (Hemelt et al., 2021)). Meanwhile, the
iteration method, founded on the major-to-occupation network, reclassifies the majors based on
the similarity of occupation outcomes. The right panel in Figure |2 displays the top 15 and bottom
15 majors based on the MCI (index after the iteration), which updates the HHI by incorporating
the information of other majors that map into the same occupations. Consequently, the ranking of
similarly specific majors can drastically diverge.

Take two majors, Petroleum Engineering and Mathematics Teacher Education, for example.
Despite the fact that these majors have remarkably similar HHI indices (0.44 and 0.45 respec-
tively), the types of occupations their students find themselves in vary significantly. This distinction
influences their major complexity calculation, resulting in considerable differences in ranking.
In the case of the Petroleum Engineering major, students are mapped into occupations that are

rarely accessible to other majors, such as Chemists and Materials Scientists, and consequently is
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connected to other specialized majors like Mechanical Engineering. Therefore, the Method of
Reflections infers that the Petroleum Engineering major outputs students with skill sets that are
hard to find elsewhere, and as such, it returns a high major complexity index rank (14/159). The
reverse is true for the Mathematics Teacher Education major in which students are mapped into
easily accessible occupations and thus connected to other relatively general majors, which in turn
yields a lower MCl rank (125/159). The important takeaway here is that majors with a similar HHI
can yield very different complexity rankings.

It is critical to understand that the MCI is not simply a refined measure of major specificity.
Take, for instance, Accounting and Nursing — fields typically perceived as professionally oriented
and hence often categorized as very specialized majors. In our MCI, Nursing ranks at the very
bottom (157 out of 159), while Accounting sits in the 102nd position. As another illustration,
Mathematics is commonly depicted as a general major in other indices (Leighton and Speer, 2020;
Hemelt et al., 2021)). Contrarily, in our MCI, it achieves a relatively high ranking of 37 out of
159. Please refer to Appendix [C| Table for the complete ranking of majors based on HHI
(before iteration) and MCI (after iteration).

The MCI’s unique character, separate from specificity measures, becomes apparent in Table 2]
which shows the correlations between the MCI and other major specificity measures. As expected,
due to their construction, HHI and Top3 are strongly correlated, and HHI and the Gini coefficient
show less correlation, corroborating the findings of Leighton and Speer (2020). Despite being
computed from the exact same data, the MCI (based on HHI as the initial values) and the HHI are
nearly orthogonal, implying that the iterative processing of the RCA matrix captures crucial infor-
mation about college majors that extend beyond the straightforward interpretation of specificity.
Therefore, in deference to the original complexity literature, we refer to it as major complexity.
Intuitively, a major’s complexity can arise from multi-dimensional skills, the depth of each skill,
and the interactions among those skills - aspects that the MCI implicitly captures without explicitly

modeling the skill dimensionalities.

21



5.2 Earning and Employment Returns

Table [3| presents the OLS estimates of earnings and employment returns associated with the MCI
and other indexes in Panel A and B, respectively. To facilitate interpretation and comparison, all
major-level indexes are standardized to maintain a mean of zero and a variance of one across
majors.10 Columns (1)-(4) include one major index at a time while columns (5)-(7) add an
additional index to the MCI, and column (8) controls for all four indexes (MCI, HHI, Top3
share, Gini coefficient). Across all specifications, gender, race, a quadratic function of potential
experience, and year-fixed effects are controlled, with standard errors clustered at the major-year
level.

Consider first the income returns in Panel A. Several features of the findings are noteworthy.
First, a one standard deviation increase in the MCI raises salary by 8.19% in column (1) and the
effect is statistically significant at the 1 percent level in explaining the earning differentials across
individuals. In contrast, the income return to the HHI is only 2.57% per standard deviation. Second,
the MCI notably increases the overall explanatory power of the model. The adjusted R? increases
by 12% when we add the MCI on top of the HHI from column (2) to (5) (i.e., adjusted R? changes
from 0.1224 to 0.1374); however, it only increases 3% when we add the HHI in addition to the
MCI from column (1) to (5) (i.e., adjusted R? changes from 0.1335 to 0.1374). Third, the income
returns to the Top3 share and Gini coefficient indexes are 4.31% and 7.62% per standard deviation,
respectively, as shown in columns (3) and (4), and exhibit lower explanatory power (adjusted R?)
than the MCI in accounting for the earning differences. The returns decrease to 3.69% and 4.83%
when the MCI is controlled for in columns (6) and (7). Fourth, the income return to the MCI
remains robustly around 8-9% even when controlling for other major indexes as shown in columns
(5)-(8), suggesting that the MCI captures distinct aspects of college majors that matter for wage
and salary earnings. Lastly, consistent with the literature, we observe lower earning returns for

females, non-whites, and Hispanics, and there is a diminishing return to potential experience.

10T the major complexity index, the Business Management and Administration major has a standardized index
close to zero, while Physics is approximately one standard deviation above, and Marketing and Marketing Research is
about one standard deviation below.
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In Appendix D] Table [D.2] a robustness check is performed for the income regression con-
trolling for occupation fixed effects at the SOC2 level. There are potentially two ways the skills
acquired from a college major affect earning outcomes. One is that skills enable students to secure
jobs in higher-paying occupations, and the other is that, within the same occupation, individuals
with higher skills command higher wages. Interestingly, by controlling for occupation fixed
effects, thereby eliminating the across-occupation channel, the return to the MCI decreases to
approximately 4-5%, down from 8%, consistently across columns. This suggests that the wage
return to the MCI can be broken down into a 3-4% component due to differences across occupations
(at the SOC2 level), and a 4-5% component due to within-occupation variation. It’s also worth
noting that the returns to other major indexes, which use occupation information in the network,
also diminish by about 23-33% using estimates from columns (2)-(7).

The discussion now turns to the employment returns in Table [3, Panel B.'! We observe similar
patterns for the major complexity index in explaining differences in employment across individ-
uals. A one standard deviation increase in the MCI raises the probability of full-time work by
1.56% in column (1), which is more than double the return to the HHI (0.61%). These estimates
remain statistically and economically significant in columns (5)-(8) when other major indexes are
controlled for. The adjusted R? also increases when the MCI is added, although the increments are
not as large as in the earnings regressions. Similarly, the probability of working full-time is lower
for females, non-whites, and Hispanics, and diminishes over potential experience. Henceforth, we
omit the estimates of these demographic controls in other tables.

We note another interesting observation: the explanatory power of the MCI increases with
iterations when we apply the Method of Reflections. As shown in Appendix |C| Table Panel A,

2

the income return increases from 0.67% to 8.19% between the 2nd and 50th iterations!2, and

""Our main results are based on the Linear Probability Model. The results are qualitatively similar when employing
Logistic and Probit regressions, both of which exhibit the return to one standard deviation change in MCI to be roughly
2.5% increment in the FTFY employment.

12The estimated income return is 8.01% at the 20th iteration. We iterate further to the 50th iteration to ensure full
convergence, meaning no further major ranking changes. See Appendix [C] Figure [C.1] for the MCI ranking changes
over iterations where majors with the largest changes are highlighted.
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the adjusted R? increases by 11% from 0.1201 to 0.1335. This increase is surprisingly large
considering the Method of Reflections is simply a manipulation on the same data. The estimated
probability of working full-time in Panel B also increases from 0.23% to 1.56%, and the adjusted
R? increases by 3.5% from 0.0398 to 0.0412. Intuitively, the complexity of a major arises from
the number of marketable skills, the depth of each skill, and the interactions among those skills.
The iterative process allows for an increasingly useful extraction of valuable information from the
major-to-occupation flow matrix that is predictive of students’ potential earning and employment

outcomes without explicitly modeling skill dimensionality.

Aggregation

The estimate of returns to college majors can be sensitive to the major and occupation aggregation
(Andrews et al., 2022). In our framework, different aggregations of majors and occupations
create different networks from which we extract information. We investigate the robustness of
our results to different aggregation schemes by computing four MCIs from different networks.
These networks vary based on whether the major is coded at a coarse (variable degfield which
corresponds to CIP2) or detailed level (variable degfieldd which mostly corresponds to CIP4) and
whether the occupation is measured at a coarse (SOC2) or detailed level (SOC4).

Table 4| displays the earnings and employment estimates of MClIs derived from different net-
works.!3 First and foremost, it is evident that the explanatory power of MClIs for labor market
outcome differentials is robust against varying levels of aggregation. Secondly, the variation in
majors when they are defined at a more detailed level has a substantial impact on earnings and em-
ployment regression. For example, as shown in column (1), when using detailed major and detailed
occupation, a one standard deviation increase in the MCI raises earnings by 8.19% and increases
the probability of full-time employment by 1.56%. In contrast, these figures are lower, at 6.88%
and 1.09% respectively, when using major at the coarse level with detailed occupation, as shown in

column (3), with a lower adjusted R? as well. This pattern is similarly observed when comparing

13See Table for the correlation among the MClIs from different networks.
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columns (2) to (4). Lastly, an interesting observation can be made by comparing columns (1) to
(2). When detailed majors are paired with broader occupation groups, the coefficients and adjusted
R? are larger in column (2) compared to when detailed majors are paired with detailed occupation
categories in column (1). Meanwhile, when using coarse majors, the coefficient and adjusted R? are
larger when paired with detailed occupation categories as shown in column (3) compared to coarse
occupations in column (4). This suggests that a detailed level category from one side combined
with a broad level from the other side yields the most information.

While the MCI computed from broad major categories'#

maintains a certain degree of consis-
tency with rankings based on detailed majors (e.g., engineering and hard science majors tend to
rank highly), crucial details and variances are missed in the former approach. For instance, when
viewed through the lens of a coarse major category, the Education major ranks 34th out of 35. How-
ever, when we delve into the detailed major categorization, interesting nuances emerge. Science
and Computer Teacher Education major ranks significantly higher (54th out of 159), contrasting
starkly with Elementary Education, which ranks at the bottom (159th out of 159). These nuances
underscore the heterogeneity within broader categories, shedding light on the varying complexity
of skills within ostensibly similar fields of study. Such granularity cannot be achieved with some
other major indices such as the Gini coefficient. The computation of the Gini coefficient requires a

fully connected network, necessitating the use of coarse-grained, aggregated categories of majors

and occupations.

Major Category

Table[S]delves into the robustness of the MCI’s predictive power concerning labor market outcomes
in comparison to traditional approaches. Traditional methodologies usually categorize majors by
broad areas of study (like STEM vs. non-STEM, Arts and Humanities, Sciences, Social Sciences,
etc.). Several interesting insights can be drawn from these comparisons.

First, as shown in Panel A column (2), earnings are on average significantly higher for STEM

14Results are available upon request.
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majors. However, this effect becomes null when we control for the MCI, as demonstrated in
column (3). Furthermore, the adjusted R? value increases by about 5% from 0.1270 to 0.1335,
demonstrating the improved predictive power of our index. This suggests that the MCI is not
simply a repackaging of traditional categorizations such as STEM vs non-STEM majors, although
engineering and hard science majors tend to be highly ranked based on the MCI.

Second, as shown in Panel A, columns (5), even after accounting for the broad fields of study (8
categories with “Others” as the omitted group), majors with higher complexity scores still exhibit
considerably higher average earnings.!> Within a broad major field, detailed majors continue to
vary in terms of their complexity scores. A one standard deviation increase in the MCI within a
major group still results in an increase in income by 4.06%, which is roughly half of the estimate in
column (1). Moreover, when we control for occupation fixed effects at the SOC2 level, the return
further drops to 2.04% per standard deviation, but remains statistically significant at the 1% level,
as shown in Table[D.4] This implies that, even within the same major field and the same occupation
group, majors with one standard deviation higher complexity still yield about 2% higher income
returns.

Third, similar patterns can be observed for employment outcomes, as shown in Table [5| Panel
B. However, it’s noteworthy that the coefficient of STEM turns negative after controlling for the

MCI in column (3).

Selection

In the analyses conducted thus far, there is an important caveat, particularly relevant in the context
of education and labor economics, concerning selection bias. This arises when the type of students
attracted to different majors inherently differs, thereby influencing labor market outcomes. For in-
stance, if students from engineering and education majors exhibit differing labor market outcomes,

this could be attributed to the distinct skill sets imparted by these two majors, but it could also be

ISWe note here, the adjusted R” in column (5) when controlling both MCI and broad major field is 0.1553 for
income in Panel A, and 0.0446 for employment in Panel B. The corresponding figures are 0.1657 and 0.0458 when
we control for major fixed effects at the detailed level instead, which is the dominant method used in the literature in
identifying returns to college skill investments as proxied by college majors.
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a function of the differing capabilities or preferences of the students these majors attract.

To address this concern, we undertake two robustness checks which are detailed in Appendix [F
and |G| While establishing causality using observational data is always challenging, and therefore
any claim of causality should be approached with caution, the results from these exercises provide
some level of confidence that our findings are robust, and suggest that the MCI can capture mean-
ingful variations across majors, beyond what can be accounted for by student selection effects.

The first exercise takes advantage of the information provided in the NSSE dataset. In this
exercise, we merge major-level (at CIP2) characteristics such as average SAT verbal and math
scores, the percentage of international students, as well as average education levels of both fathers
and mothers from the NSSE into our ACS sample. The results controlling for these variables in
this merged sample, displayed in Table are consistent with our main findings. In Panel A, the
income return to the Major Complexity Index is 10.15% with basic controls in column (1). This
figure drops to 8.25% when we control for major average SAT scores, parental education levels,
and the percentage of international students in column (2). The employment return, as shown in
Panel B, also maintains consistency across the two columns.

The second robustness check involves merging the MCI computed from the ACS with the
NLSY97 dataset, which provides a more extensive set of observable controls at the individual level,
particularly concerning preexisting abilities and high school preparations. It’s important to note
that, because this merge occurs at the CIP2 level from ACS to NLSY97, the MCI used is computed
from the network between coarse majors (which corresponds to CIP2) and detailed occupation
codes at SOC4. Although the NLSY97 sample is considerably smaller, the results, displayed
in Table are nonetheless similar to our main results obtained from the ACS sample. With
adjustment for various ability measures (SAT/ACT scores, AFQT score, and high school GPA)
and household information (average household income during ages 15-19, parental education), we
find that one standard deviation increase in the MCI is associated with roughly a 7-8% increase
in salary and a 5% increase in the probability of working full-time. These estimates align closely

with the one that only contains the basic controls in column (1). This exercise further reinforces
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our main findings, demonstrating that the MCI remains a significant predictor of labor market
outcomes, even after adjusting for individual ability and household factors.

While the MCI demonstrates strong predictive power for labor market outcomes, it is critical
to acknowledge that our findings rest on the selection on observables assumption, which is un-
doubtedly restrictive. Other factors unaccounted for in our model, such as individual interests,
work-life balance preferences, risk tolerance, and other unmeasured characteristics can signif-
icantly influence students’ major selection and subsequent labor market performance. If these
unobserved variables were taken into account, the associations observed between the MCI and
labor market outcomes could potentially be attenuated. Much of the recent efforts on returns
to college majors have focused on identifying the causal impact of majors on future earnings,
allowing for the selection on unobservables across majors (Kirkeboen et al., 2016; |[Hastings et al.,
2013;|Daly et al.,[2022; Andrews et al., 2017; Bleemer and Mehta, 2022). To thoroughly isolate the
complexity of the latent skills associated with each major, one would need either an extensive set
of controls or additional assumptions, such as a complicated structural model (e.g., |/Arcidiacono
2004; Kinsler and Pavan|2015]). Thus, while the MCI serves as a powerful predictor of labor market
outcomes, the estimates derived from our analysis should be interpreted with due consideration.

As such, they may be considered an upper bound on the true predictive power of the MCI.

Heterogeneity

Leighton and Speer (2020) reports that the returns to major specificity measures, including the
Gini coefficient and other indexes, decrease with age. Similarly, the return to the major complexity
may vary over the life cycle as well. To examine this, in Figure [3|and 4] we display the income and
employment return to MCI over age, respectively. Specifically, they plot the coefficients obtained
from the specification in Table [3] column (1) over different samples constructed with a sliding 10-
year window of age (i.e., 25-35, 26-36, etc.). The income return at the early career is approximately
8.9% per standard deviation for the age group 25-35. This return gradually diminishes with age,

and by the time individuals are between 50-60 years old, the return is around 7.5%. Similar patterns
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can be observed for employment return.

These observations suggest that the benefits of a complex major, as measured by the MCI, are
most pronounced in the early- and mid-career. As workers age, the returns to major complexity
tend to diminish, though they remain statistically significant. This could be due to a variety of
factors such as career changes or skill obsolescence (Deming and Noray, [2020). However, despite
this diminishing return, it is important to note that the MCI remains a significant predictor of both
income and employment outcomes, even toward the end of one’s career. This indicates that the
skill bundle of college majors, as measured by the Major Complexity Index, can have long-lasting
impacts on career outcomes, which aligns with the perspective that investment in higher education
can yield advantages spanning potentially an entire professional career (Hoxby, |[2020).

Table [6] delves deeper to examine potential heterogeneity in the effects of major complexity
across different demographic groups, specifically by gender and race/ethnicity. Interestingly, the
effects observed in Table [3| manifest differently across these subgroups. As column (2) indicates,
males seem to reap higher returns to major complexity on average. All else being equal, a one
standard deviation increase in the MCI boosts salary by 9.24% for males, a premium of 2.53%
compared to females. This gender difference is statistically significant at the 1 percent level.
This finding aligns with previous research that suggests that male graduates receive higher returns
to education in some majors (e.g., Altonji et al.|[2012; Hastings et al.|[2013). When we look at
racial/ethnic groups, there are observable differences as well. Whites appear to gain higher returns
from major complexity, while the return is lower for Hispanics. Some studies have documented
similar racial and ethnic disparities in labor market returns to college majors (e.g.,(Carnevale et al.
2013). These results suggest that the returns to major complexity may not be uniform across

different demographic groups.

5.3  MCI Over time

The Economic Complexity Index (ECI), originally based on trade data, garnered considerable

attention due to its strong correlation with countries’ GDP growth (Hidalgo and Hausmann, 2009;
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Hausmann et al., 2014; |Hidalgo, 2021; Balland et al., 2022)). Specifically, economies with higher
EClIs tend to experience more rapid growth in the future, emphasizing the index’s significance
in capturing countries’ production capacities and potentials. In our study, an analogous analysis
would involve predicting future major-level mean income using the current major complexity level.

Our data from the ACS, however, is limited to the years 2009-2019, constraining our capacity
to analyze long-term changes. Nevertheless, we can still utilize the available data for this exercise.
We begin by constructing the MCI using data from each year.'® Subsequently, using the major
by year panel constructed, we perform a major-level analysis of the log mean income of major
m, T years into the future for T = 1,2,5,10, with the current log mean income and the MCI as

independent variables, controlling for female, White, and Hispanic ratios in the major, as:
logIncomep, ;1 = Bo+ B1 - MCly, ;s + B2 logIncomey, s + B3 Ratioy, ; + 4.

Our results in Table [/|demonstrate a correlation between the MCI and the future mean income
associated with different majors. Interestingly, we notice that the coefficient of the MCI increases
as we look into a longer time horizon (i.e., as T increases) which suggests that the MCI is related
to the long-term growth of college majors. For example, as shown in Panel A, the coefficient of
the MCI on log income escalates from .0057 to .0284 when 7 increases from 1 year in column (2)
to 10 years in column (5). This indicates that the MCI not only correlates with the current returns
on majors, as shown in column (1), but also predicts how these returns change over time.

In contrast, the HHI, while highly correlated with the current major average income, does not
demonstrate a similar predictive power for future changes, as shown in Panel B. This differentiation
further emphasizes the unique insights offered by the MCI in understanding both the current and
future dynamics of income across college majors.

In Appendix [E| we present changes in MCI rankings over time, using the first five years (2009-
2013) and the last five years (2015-2019) of the data. The rankings remain mostly stable over this

period, with a correlation of 0.93 between the MCls at the major level. However, certain notable

16We restrict the majors and occupations so that each of them has at least 100 individuals each year. As a result,
we have 156 majors instead of 159 in this exercise.
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changes did occur. For example, the ranking for Information Science rose from 33 to 12. The
ranking for Pharmacy, Pharmaceutical Sciences, and Administration also improved, rising from
112 to 62. On the other hand, the rankings for Commercial Art and Graphic Design declined from
73 to 114. Finance also dropped from 83 to 118, which might have been influenced by a decrease
in job vacancies following the 2008 financial crisis. These observed changes in rankings over time
may reflect underlying structural shifts in the labor market. Nonetheless, exploring these potential
explanations in detail falls outside the scope of this paper. It would indeed be an intriguing avenue

for future research to investigate these chronological patterns further.

5.4 MCI and Major Characteristics

Our preceding analyses suggest that the MCI reveals important aspects of college majors that
matter to the earnings and employment of college graduates. In order to better understand what
the MCI captures, we combine the MCI computed from the ACS with major-level characteristics
from the National Survey of Student Engagement (NSSE) for the years 2005-2011. In total, we
are able to match 22 majors (out of 22 majors in NSSE; out of 38 majors in ACS at degfield) at the
CIP2 level between the two datasets. See Appendix [H for the description of the NSSE dataset and
the matching details.

Table 8| provides the pairwise correlation between the MCI (after iteration), HHI (before iter-
ation), and a number of major-specific characteristics. First of all, in terms of students’ academic
preparation before coming to college, the MCI is positively correlated with students’ performance
in all three SAT measures (mathematics, verbal reasoning, and writing ability). Noticeably, the
positive correlation between the MCI and SAT math score is particularly strong. In comparison,
the correlation between the HHI and SAT variables is much weaker.

Interestingly, when examining areas where students report that their current academic pro-
grams have helped them develop further knowledge and skills, we see that further development
of thinking critically and analytically, quantitative and complex problem solving, and the use of

computing and information technology are positively correlated with the MCI measure. Similarly,

31



analyzing the basic elements of an idea, experience, or theory, and applying theories or concepts to
practical problems or in new situations also has a fairly strong positive correlation with the MCI.
In contrast, there is little correlation between the MCI measure and the advancement of writing
and speaking abilities in college. Taken together with the observed positive correlation with SAT
verbal and writing scores, this suggests that higher MCI majors have students with high verbal and
writing abilities (potentially developed prior to college), but who primarily report developing their
ability to think critically and analytically, as well as the ability to analyze and solve quantitative,
practical, and complex problems. Relatively speaking, the correlations between the HHI and those
major features are much lower, except for the usage of computing and information technology.
Another important observation is the negative correlation between the MCI and broad general
education (“Acquiring a broad general education”, correlation —0.207). Meanwhile, the MCI does
not demonstrate a correlation with the acquisition of job or work-related knowledge and skills
(“Acquiring job or work-related knowledge and skills”, 0.027). Meanwhile, high HHI majors
tend to be more job-specific (0.132), and even less general (—0.287). This suggests that the MCI
transcends the traditional distinction between general and job-specific skills. Presumably, the
MCT’s robustness in explaining earning and employment differentials is attributable more to the
quantitative and analytical skills it encapsulates, rather than direct knowledge about job content.
We also find another intriguing set of correlations. Both the MCI and HHI are negatively
associated with voting behavior, understanding self and others from diverse backgrounds, de-
veloping a personal code of values and ethics, spirituality, and contributions to the community.
Different undergraduate degree programs adopt various approaches to prepare students for the
labor market. Some are more vocationally oriented, such as engineering, while others adhere to the
principles of a liberal arts education model (Ransom and Phipps, 2017). All these aforementioned
elements represent significant values of higher education that go beyond job placements, and they
are not particularly represented by the information contained in a major-to-occupation network.
As [Webber] (2014) succinctly states, “While few would argue that a particular major should be

chosen purely based on economic returns, the under-performing labor market and increasing tuition

32



necessitate it to be at least considered by college underclassmen trying to decide their career path.”

Regarding time commitment and effort, we observe that students in high MCI majors tend
to report spending more hours preparing for classes, completing problem sets, and working on
longer written assignments, more so than high HHI majors. If the time spent studying can be
viewed as a proxy for coursework intensity and difficulty, this suggests that high MCI majors are
more demanding on students and require them to invest greater efforts into their schooling. This

increased investment, however, could potentially yield higher returns in the future.

6 Discussion

How are advanced skills formed through college education via different majors, and is this skill-
production process responding to the changes in skill demand in the labor market (Conzelmann
et al., |2023)? These are very hard questions to answer because skills are not directly observable,
and some of them may not even be easily interpretable. In this paper, instead of explicitly modeling
skill dimensionality (see, e.g., |Kinsler and Pavan|2015}; Hemelt et al.[|2021)), we take an alternative
approach that computes a general measure of “complexity” for each major which reflects the skills
taught in different majors and that are required by different occupations. This easily computable
index adds another lens through which we can discuss these important questions.

Specifically, we apply the Method of Reflections, introduced by |Hidalgo and Hausmann (2009)
to parse through the major-to-occupation flow network and formulate a scalar measure that indi-
cates the relative complexity of skills imparted by various majors. Our complexity measure appears
to be a potent factor in explaining individual earning and employment differences across college
majors, and the results remain robust to confounding factors and aggregation issues. Further results
suggest that the MCI can not only account for current income disparities but also predict future
major-level earning growth, a feat beyond the capability of typical specificity indices. Additional
exercises reveal that the MCI strongly relates to advanced skills such as critical and analytical
thinking, as well as abilities to analyze and solve quantitative, practical, and complex problems.

The major complexity index exhibit rankings of college majors that are naturally of interest to
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various stakeholders, including prospective students and their families in choosing college majors,
as well as university administrators in charge of strategic planning of their schools. From students’
perspective, it is essential to understand how the occupational outlook varies based on the choice of
major. While it is well documented that expected earning is a key factor in choosing fields of study
(Befty et al., 2012; Wiswall and Zafar, 2015; Altonji et al., 2016)), another equally important yet
underexplored aspect is what occupations become available through the skills acquired in different
college majors.

For administrators, the major complexity index presents a convenient and informative refer-
ence for their strategic planning. Evidently, colleges have been struggling to allocate resources
across majors, particularly under budget-constrained circumstances. For instance, the University
of Wisconsin at Stevens Point announced its elimination of 13 majors in 2018 to address “fiscal
challenges” (Flaherty, 2018]). Most recently, many universities are facing severe financial diffi-
culties caused by the COVID-19 pandemic (e.g. |Seltzer2021), and forced to reallocate limited
resources across majors. The major complexity index can facilitate this decision-making process
by providing information on which majors prepare students with a more marketable combination of
skills. It is worth emphasizing that the MCl is easily computable with a minimum data requirement.
Many universities have a center for career development that conducts post-graduation surveys. This
allows administrators to apply our proposed method to their own major-to-occupation network to
produce individualized major complexity ranking. They can also compare it against the national
or peer institutions’ ranking of major complexity to better understand the comparative advantages
of their own institution, and build the short- and long-term strategic plans accordingly.

One important caution in interpreting the Method of Reflections is the assumption that major-
to-occupation mappings are primarily (if not entirely) based on the skills match. The RCA matrix
adopted following |Hidalgo and Hausmann| (2009)) alleviates such a concern by removing excess
variation and focusing only on significant presences and absences. Despite this noted limita-
tion, the Method of Reflections and the complexity index are widely connected to differences

in economic growth, income inequality, gender inequality, humans development, and greenhouse
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emissions (see Hidalgo, 2021; Balland et al., 2022 for a detailed summary of its applications)
due to the minimum data requirements and surprisingly strong explanatory power that this sim-
ple computation offers. Similarly, our generalized measure of MCI provides a useful tool for
investigating difficult questions pertaining to the unobserved college skill production process. As
aforementioned, a major-to-occupation network can be easily constructed from many data sources
and one can utilize the rich information contained in a network structure to extract the major
complexity feature, without relying on student-reported major characteristics. Moreover, we can
exploit the dynamics of such a network over time to examine any structural changes within college
education as a response to the changing nature of the labor market.

Several extensions of our analysis are in order. First, skill demand varies across local markets
and time (Acemoglu and Autor, 2011; Deming and Kahn, 2018} Hershbein and Kahn, 2018;
Deming and Noray, [2020; Hemelt et al., [2021). Our paper demonstrates the MCI dynamics over
time by computing the MCI for each year. With appropriate data, one could also explore the spatial
variations in major complexity. For instance, the MCI of a given major may vary across different
types of institutions, such as public vs. private sector, varying college quality, as well as different
geographic locations, etc. (Clotfelter 1999; Dale and Krueger 2002, 2014} Black and Smith/2004;
Hoxby|2009; Ehrenberg [2012; |Dillon and Smith/2020; among others). Second, in this paper, we
focus on the complexity on the major side, while the complexity of required skills by occupation
(i.e., Occupation Complexity Index - OCI) is actually computed as a byproduct of the Method
of Reflections. One obvious and exciting extension is to analyze the OCI in various ways. For
example, similar exercises to this paper can be performed to examine the return to occupation
complexity over time, as well as the association between the occupation complexity measure and
occupational information from rich data sources such as the O*NET. We leave analyses of these

and related issues as possible directions for further research.
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Figures and Tables

Ranking Major Name HHI Ranking Major Name mci
1 nursing 0.71 1 computer science 2.09
2 teacher education: multiple levels 0.54 2 electrical engineering 2.07
3 special needs education 0.51 3 computer engineering 1.86
4 elementary education 0.49 4 materials science 1.84
5  mathematics teacher education 0.45 5  chemical engineering 1.79
&  petroleum engineering 0.44 & civil engineering 1.73
7  science and computer teacher education 0.41 7 architectural engineering 1.66
8  early childhood education 0.41 8 mechanical engineering 1.63
9  computer science 0.39 9 naval architecture and marine engineering 1.61
10 art and music education 0.39 10 engineering mechanics, physics, and science 1.60
11 nuclear, industrial radiclogy, and biclogical technologies 0.38 11  mining and mineral engineering 1.58
12 secondary teacher education 0.37 12 construction services 1.52
13  language and drama education 0.36 13 miscellaneous engineering technologies 1.51
14  medical technologies technicians 0.35 14  petroleum engineering 1.49
15  general education 0.35 15  general engineering 1.48
16 computer engineering 0.35
17 medical assisting services 0.34 . . .
18  accounting 0.32 125 mathematics teacher education -0.88
19  civil engineering 0.30
20  computer programming and data processing 0.29 . . .
21 mechanical engineering 0.29 145  art history and criticism -1.33
22 computer and information systems 0.28 146  psychology -1.33
23 social science or history teacher education 0.25 147 communications -1.37
24 aerospace engineering 0.25 148 teacher education: multiple levels -1.39
25  construction services 0.24 149 special needs education -1.40
26  actuarial science 0.24 150 communication disorders sciences and services -1.45
27 information sciences 0.24 151 english language and literature -1.53
28  social work 0.23 152 visual and performing arts -1.55
29  chemical engineering 0.23 153  journalism -1.56
30 computer information management and security 0.22 154  social work -1.62
31  mining and mineral engineering 0.22 155 family and consumer sciences -1.65
32  educational psychology 0.22 156 early childhood education -1.70
33 materials engineering and materials science 0.21 157  nursing -1.76
34  materials science 0.21 158 language and drama education -1.83
35  pharmacy, pharmaceutical sciences, and administration 0.21 159 elementary education -2.11

Figure 2: Ranking Changes over Iterations. The left panel in the figure displays the top 35 majors
based on the occupational HHI (index before the iteration). The right panel in the figure presents
the top 15 and bottom 15 majors based on the MCI (index after the iteration), which updates the
HHI by incorporating the information of other majors that map into the same occupations.
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Figure 3: Income Return over Age Window. The figure plot point estimate of the coefficient
on MCI obtained from the basic specification in Table [3, Panel A, Column (1) over different
samples constructed with a sliding 10-year window of age (i.e., 25-35, 26-36, etc.). The gray
shade represents the 95% confidence interval.
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Figure 4: Employment Return over Age Window. The figure plot the point estimate with a 95%
confidence interval obtained from the basic specification in Table |3} Panel B, Column (1) over
different samples constructed with a sliding 10-year window of age (i.e., 25-35, 26-36, etc.).
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Table 1: Summary Statistics

Mean  Std. Dev. Min Max N
Panel A: MCI Construction
Female 0.490 0.499 0 1 651,638
White 0.800 0.399 0 1 651,638
Hispanic 0.090 0.286 0 1 651,638
Experience 7.983 3.130 3 13 651,638
Panel B: Earning Analysis
Female 0.472 0.499 0 1 1,999,140
White 0.811 0.391 0 1 1,999,140
Hispanic 0.075 0.263 0 1 1,999,140
Experience 20.084 10.267 3 38 1,999,140
Annual Income (2010 $) 71,199 63,507 500 654,737 1,999,140

Panel C: Employment Analysis

Female 0.514 0.499 0 1 2,591,343
White 0.811 0.391 0 1 2,591,343
Hispanic 0.075 0.264 0 1 2,591,343
Experience 20.458 10.360 3 38 2,591,343
Full-time Working Status 0.801 0.398 0 1 2,591,343

Note: Panel A presents the summary statistics for the dataset utilized in constructing
both the major-to-occupation network and subsequent Major Complexity Index, along with
other indexes related to major specificity; Panel B provides the summary statistics for
the dataset employed in the earnings analysis, where the annual earning is adjusted for
inflation to 2010 dollars; and Panel C reports the summary statistics for the sample used
in the employment analysis where full-time working status is 1 if one has worked at least
40 weeks a year and at least 30 hours a week in the past 12 months. Source: American
Community Survey (ACS), 2009-2019.

Table 2: Correlation Among Indices

HHI TOP3  GINI MCI
HHI 1.0000
TOP3 0.9240 1.0000
GINI  0.1406 0.1261 1.0000
MCI  0.0117 0.2175 0.0657 1.0000

Note: All major-level indexes are computed
from a network connecting detailed ACS majors
(which mostly correspond to CIP4) and detailed
occupation categories (SOC4), and are standard-
ized to have a mean of zero and a variance of one
across 159 detailed ACS majors.
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Table 3: Earning and Employment Return on the Major Complexity Index (MCI)

(1) (2) (3) “) (5) (6) ) 3
Panel A: DV - log of Annual Income (2010 $)
MCI 0.08197%*3 0.0864***  0.0777***  (0.0809***  (0.0836%**
(0.0060) (0.0045) (0.0056) (0.0061) (0.0060)
HHI 0.0257%** 0.0320%** 0.0218
(0.0050) (0.0053) (0.0165)
TOP3 0.0431%** 0.0369%*** 0.0124
(0.0056) (0.0062) (0.0169)
GINI 0.0762%** 0.0483** 0.0003
(0.0180) (0.0207) (0.0163)
Female -0.2488*** -0.3296%*** -0.3254%**  .0.3162**%*  -0.2602*%**  -0.2591%**  _(0.2489***  _(0.2601***
(0.0053) (0.0060) (0.0064) (0.0077) (0.0038) (0.0039) (0.0052) (0.0037)
White 0.1128%*: 0.101 %% 0.1043%*%  (,0983*** (), 1182***  (.1178***  (.1131%**  (,1181%**
(0.0069) (0.0063) (0.0063) (0.0065) (0.0057) (0.0059) (0.0067) (0.0057)
Hispanic -0.1658*** -0.1637*** -0.1643*** .0, 1645%*%*  -0.1642%**  -0.1651%** -0.1654%**  -(0,1645%**
(0.0045) (0.0046) (0.0046) (0.0045) (0.0045) (0.0045) (0.0045) (0.0046)
Experience 0.0513%** 0.0522%** 0.0520%**  (0.0523***  (0.0512***  (0.0512**%*  (0.0513***  (.0512%**
(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0007)
Experience2 -0.0009%3** -0.0010%** -0.0010***  -0.0010***  -0.0010***  -0.0010***  -0.0009***  -0.0010%***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared Adj. 0.1335 0.1224 0.1252 0.1206 0.1374 0.1373 0.1338 0.1375

Panel B: DV - Full-time Working Status

MCI 0.0156%** 0.0170%**  0.0150%**  0.0157***  (0.0187***
(0.0012) (0.0010) (0.0011) (0.0013) (0.0015)
HHI 0.0061*** 0.0077%** 0.0131%**
(0.0010) (0.0010) (0.0032)
TOP3 0.0090%*** 0.0082*** -0.0056
(0.0012) (0.0013) (0.0037)
GINI 0.0026 -0.0027 -0.0158***
(0.0044) (0.0046) (0.0034)
Female -0.1358#** -0.1516%** -0.1504%** .0, 1487***  -0.1382***  -(0.1379%**  -(.1358***  -(0,1385%***
(0.0014) (0.0017) (0.0017) (0.0018) (0.0014) (0.0014) (0.0014) (0.0014)
White 0.0078%*%* 0.0054*** 0.0059***  0.0048***  (0.0089***  (0.0087***  0.0078***  (0.0089%*%*
(0.0021) (0.0018) (0.0018) (0.0019) (0.0019) (0.0019) (0.0021) (0.0019)
Hispanic -0.011 1#** -0.0105%** -0.0107***  -0.0108***  -0.0108***  -0.0110%*** -0.0111%** -0.0107***
(0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0014)
Experience 0.0046%** 0.0047%** 0.0047***  0.0047***  0.0045**%*  0.0045**%*  0.0046***  (0.0045%**
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Experience2 -0.0002%3** -0.0002%3** -0.0002***  -0.0002***  -0.0002***  -0.0002%**  -0.0002%**  -0.0002%**
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared Adj. 0.0412 0.0402 0.0405 0.0398 0.0420 0.0418 0.0412 0.0421

Note: The dependent variable in Panel A is the natural log of annual income in 2010 dollars, with 1,999,140 observations. The dependent
variable in Panel B is the full-time working status with 2,591,343 observations. Gender, White, Hispanic, quadratic function of potential
experience, and year-fixed effects are controlled for in all specifications. The MCI and other indexes are computed from a network
connecting detailed ACS majors (which mostly correspond to CIP4) and detailed occupation categories (SOC4). Standard errors are
clustered at the major-year level. Significance is as follows: one-percent=**%*, five-percent="**, and ten-percent="*.
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Table 4: Earning and Employment Return on the MCI - Aggregation

(D (2 (€)] 4)
Network Major (Detailed) Major (Detailed) Major (Coarse) Major (Coarse)
Structure Occupation (Detailed) Occupation (Coarse) Occupation (Detailed) Occupation (Coarse)

Panel A: DV - log of Annual Income (2010$)

MCI?gtgjledMajor 0.0819%%*
(0.0060)
DetailedMaj
Mclsggz ajor O. 1 009***
. (0.0060)
MClgpry / 0.0688%**
(0.0047)
MCIggaCrfMajor 0.0514%%**
(0.0050)

R-squared Adj. 0.1335 0.1374 0.1308 0.1259

Panel B: DV - Status of Working Full-Time

MCI?gtgiledMajor 0.0156%*
(0.0012)
DetailedMajor
MCIgaatetMare 0.0174%
(0.0012)
MCI%“C’X"M""” 0.0109%**
(0.0009)
CoarseMajor
MClgprr / 0.0054#**
(0.0010)

R-squared Ad;. 0.0412 0.0413 0.0406 0.0400

Note: The dependent variable in Panel A is the natural log of annual income in 2010 dollars, with 1,999,140
observations. The dependent variable in Panel B is the full-time working status with 2,591,343 observations.
Gender, White, Hispanic, quadratic function of potential experience, and year-fixed effects are controlled for in
all specifications. The MClIs across columns are computed from different networks. These networks vary based
on whether the major is coded at a coarse (ACS variable degfield which corresponds to CIP2) or detailed level
(ACS variable degfieldd which mostly corresponds to CIP4) and whether the occupation is measured at a coarse
(SOC2) or detailed level (SOC4). Standard errors are clustered at the major-year level. Significance is as follows:
one-percent=***_ five-percent=**, and ten-percent="*.
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Table 5: Earning and Employment Return on the MCI - Controlling for Major Categories

(D (2) (3) 4 &)
Panel A: DV - log of Annual Income (2010 $)
MCI 0.0819%3%* 0.0805%** 0.0406%**
(0.0060) (0.0093) (0.0071)
STEM 0.1455%** 0.0048
(0.0124) (0.0166)
Arts and Humanities 0.0259* 0.0554***
(0.0135) (0.0134)
Business 0.2109%:**  (.2]148%:**
(0.0135) (0.0125)
Education -0.1426%**  -(0,0982%:**
(0.0113) (0.0115)
Engineering 0.3696***  0.3006%**
(0.0130) (0.0168)
Professional 0.2357***  (,2726%**
(0.0154) (0.0175)
Science 0.1763***  (0,1354%**
(0.0187) (0.0134)
Social Science 0.1203***  (0,1444%**
(0.0210) (0.0187)
R-squared Adj. 0.1335 0.1270 0.1335 0.1541 0.1553

Panel B: DV - Full-time Working Status

MCI 0.0156%** 0.0179%:** 0.0074 %
(0.0012) (0.0020) (0.0012)
STEM 0.0231***  -0.0081**
(0.0021) (0.0037)
Arts and Humanities -0.0388***  -(0.0340%**
(0.0046) (0.0042)
Business 0.0319%:**  ().0322%:**
(0.0041) (0.0036)
Education -0.0249%** 0,017 1%**
(0.0047) (0.0043)
Engineering 0.0348***  0.0218%**
(0.0041) (0.0042)
Professional 0.0212***  (0.0275%**
(0.0053) (0.0053)
Science 0.0159%** 0.00827*
(0.0043) (0.0039)
Social Science -0.0166***  -0.0126%***
(0.0046) (0.0040)
R-squared Adj. 0.0412 0.0403 0.0413 0.0445 0.0446

Note: The dependent variable in Panel A is the natural log of annual income in 2010 dollars,
with 1,999,140 observations. The dependent variable in Panel B is the full-time working
status with 2,591,343 observations. Gender, White, Hispanic, quadratic function of potential
experience, and year-fixed effects are controlled for in all specifications. The MCI is computed
from a network connecting detailed ACS majors (which mostly correspond to CIP4) and
detailed occupation categories (SOC4). Standard errors are clustered at the major-year level.
Significance is as follows: one-percent=***, five-percent=**, and ten-percent=*.
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Table 6: Earning and Employment Return on the MCI - Heterogeneity

1) (2) (3) “) &)
Panel A: DV - log of Annual Income (2010%)
MCI 0.0819%#** 0.0924#** 0.0659%**  (0.0848***  (.0801%**
(0.0060) (0.0042) (0.0094) (0.0062) (0.0068)
MCI *Female -0.0253%* -0.0248%**
(0.0100) (0.0099)
MCI *White 0.0205%** 0.0190%:**
(0.0061) (0.0060)
MCI *Hispanic -0.0396%**  -0.0382%**
(0.0033) (0.0033)
R-squared Adj. 0.1335 0.1338 0.1337 0.1337 0.1342
Panel B: DV - Status of Working Full-Time
MCI 0.0156%** 0.0162%** 0.0006 0.0163#*%** 0.0019
(0.0012) (0.0009) (0.0021) (0.0012) (0.0016)
MCI*Female -0.0014 -0.0012
(0.0022) (0.0022)
MCI*White 0.0192%** 0.0190%**
(0.0016) (0.0016)
MCT*Hispanic -0.0093***  _(,0082%**
(0.0011) (0.0011)
R-squared Adj. 0.0412 0.0412 0.0417 0.0413 0.0417

Note: The dependent variable in Panel A is the natural log of annual income in 2010
dollars, with 1,999,140 observations. The dependent variable in Panel B is the full-time
working status with 2,591,343 observations. Gender, White, Hispanic, quadratic function
of potential experience, and year-fixed effects are controlled for in all specifications. The
MCI is computed from a network connecting detailed ACS majors (which mostly correspond
to CIP4) and detailed occupation categories (SOC4). Standard errors are clustered at
the major-year level. Significance is as follows: one-percent=***, five-percent=**, and

ten-percent="*.
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Table 7: Major-level Analysis of the MCI in Predicting Future Income

(H ) (3) ) )]
log(Income),,; log(Income),, ;1 log(Income),, ;> log(Income),, ;15 log(Income),, ;110
Panel A: MCI
MCI,, 0.0624%** 0.0057* 0.0087** 0.0208*** 0.0284**
(0.0063) (0.0032) (0.0036) (0.0052) (0.0135)
log(Income),y, ; 0.8739%:#* 0.8519%%#%* 0.8208%** 0.7554%%%*
(0.0123) (0.0139) (0.0181) (0.0468)
R-squared Adj. 0.5243 0.8880 0.8720 0.8644 0.8598
No. observations 1,716 1,560 1,404 936 156
No. years 11 10 9 6 1
Panel B: HHI
HHI,,,, 0.0215%%:* 0.0016 -0.0009 -0.0027 -0.0111
(0.0043) (0.0022) (0.0025) (0.0032) (0.0078)
log(Income),, ; 0.8776%** 0.8601 *#:* 0.8444 %% 0.8049%3#*
(0.0121) (0.0137) (0.0177) (0.0447)
R-squared Adj. 0.5041 0.8878 0.8715 0.8621 0.8576
No. observations 1,716 1,560 1,404 936 156
No. years 11 10 9 6 1

Note: The MCI and HHI are constructed using yearly data from ACS, 2009-201, from a network connecting detailed
ACS majors (which mostly correspond to CIP4) and detailed occupation categories (SOC4). In this exercise, we have
only 156 (out of 159 majors) that have at least 100 individuals in each major and occupation each year. Column (1) reports
the major-level analysis of the log mean income for major m in year ¢ on the current MCI (in Panel A) and HHI (in Panel
B), controlling for the female, White, and Hispanic ratios in major m year . Column (2)-(5) presents the major-level
analysis of the log mean income for major m, T years into the future for 7 =1,2,5, 10, shown in each column respectively,
on the current MCI (in Panel A) and HHI (in Panel B), with the current log mean income of major m in year ¢ as well
as the female, White, and Hispanic ratios of major m in year ¢ controlled for. The number of observations changes
across columns depending on how many years are utilized in the analysis. Standard errors are shown in parentheses.
Significance is as follows: one-percent=***, five-percent=**, and ten-percent=*.

48



Table 8: Pairwise Correlations Between the MCI and NSSE Major Specific Characteristics

Variable Description MCI  HHI

Standardized Test Scores

SAT Verbal 0.105 0.038
SAT Mathematics 0.226 0.112
SAT Writing 0.091 -0.024
SAT Total 0.190 0.087
SAT Total (ACT converted) 0.188 0.085
Student Report - Developed Knowledge and SKkills

Writing clearly and effectively 0.047 -0.016
Speaking clearly and effectively 0.007 -0.053
Acquiring a broad general education -0.207 -0.287
Acquiring job or work-related knowledge and skills 0.027 0.132
Thinking critically and analytically 0.274  0.092
Analyzing quantitative problems 0.260 0.140
Solving complex real-world problems 0.392 0.229
Using computing and information technology 0.193 0.244
Working effectively with others 0.160 0.158
Learning effectively on your own 0.161 -0.034
Memorizing facts, ideas, or methods from your courses and readings -0.269 -0.160
Analyzing the basic elements of an idea, experience, or theory 0.311 -0.023
Synthesizing and organizing ideas, information, or experiences 0.148 -0.004

Making judgments about the value of information, arguments, or methods 0.085  0.029
Applying theories or concepts to practical problems or in new situations 0.266 0.148

Voting in local, state, or national elections -0.095 -0.163
Understanding yourself -0.232  -0.232
Understanding people of other racial and ethnic backgrounds -0.186 -0.229
Developing a personal code of values and ethics -0.095 -0.161
Developing a deepened sense of spirituality -0.329 -0.186
Contributing to the welfare of your community -0.131 -0.175

Student Report - Time Spent

Hours Spent Preparing for class 0.100  0.020
Amount of problem sets that take more than an hour to complete 0.219 0.175
Amount of problem sets that take less than an hour to complete -0.024 -0.140
Number of written papers or reports: 20 pages or more 0.564 0.366
Number of written papers or reports: between 5 and 19 pages 0.181 -0.001
Number of written papers or reports: fewer than 5 pages 0.136 -0.131
Challenging exams during the current school year 0.194  0.099

Note: Correlation based on variations across 22 matched majors (out of 22 majors in NSSE;
out of 38 majors in ACS) at the CIP2 level between the two datasets. The MCI and HHI are thus
computed from a network connecting coarse-level ACS majors (which correspond to CIP2) and
detailed occupation categories (SOC4).
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Appendix A Building Block Model and Flow Network

In this section, we briefly explain the intuition of the “building block model” (introduced in Hidalgo
and Hausmann/ 2009 and solved analytically in |Hausmann and Hidalgo |2011) in the context of a
major-to-occupation flow network. For a more detailed discussion, see Hidalgo| (2021)).

Using the same example in Section [3] (Figure [I)), there are four majors and four occupations.
Now suppose the matching of students between majors and occupations is based on five latent
skills. On the left-hand-side of Figure [A.T] a link between a major and a skill indicates that this
major has a comparative advantage in equipping students with this skill. Conversely, a link between
a skill and an occupation represents that this skill is required by that occupation. For example,
students are required to obtain Skills 1 and 2 to be engineers. Since students from Engineering and
Computer Science majors acquire both, they can become engineers.

Following this process, the tripartite network of major-skill-occupation reduces down to the
bipartite major-occupation network on the right-hand-side. The goal of the MCI is to infer the
relative complexity of the skill set in each major based on the “building-block” model (left-hand-
side figure) from the information contained within the flow network (right-hand-side figure). The
complexity method helps to characterize the skill production structures without explicitly modeling

the skill dimensionality.

Engineering Engineer Engineering Engineer
Skill 1 / —
Education Skill 2 HS Teacher Education HS Teacher
Skill 3
Computer Scie Clerk Computer Science Clerk
Skill 4

History Librarian History Librarian

.

Skill 5

Figure A.1: Illustration of the “Building-Block™ Model
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Appendix B Method Details

B.1 Choice of Initial Values

When applying the method of reflection to a major-to-occupation network, it is necessary to specify
an initial value of MCI for each major. We find that the specific initial values do not affect the
standardized MCI following convergence. Provided that we start with an initial vector that ranks
the majors according to skill specificity, the MCI invariably converges to the same value. To test
this, we initiated from various points including HHI, TOP3, and GINI; in all instances, the MCI
consistently converged to the same value, as evidenced in Table

Conversely, we can initiate the process from the spread count, i.e., the number of occupations
associated with each major in an RCA matrix (see Section [B.2)). This approach precisely mirrors
the original specification proposed by Hidalgo and Hausmann| (2009). Here, the initial values
reflect the extent to which the majors are diversified, essentially representing the inverse of speci-
ficity. Intuitively, majors that are specialized have a small spread (i.e., linked to a small number of
occupations in an RCA matrix). In this case, the resulting MCI demonstrates a flipped sign version
of the MClIs derived from specificity measures.

This result closely relates to the finding by Cristelli et al.| (2013)). In Cristelli et al.| (2013)), the
authors assume the initial values are set by the spread count and show that the method of reflection
is equivalent to finding the eigenvalues of a major-to-major similarity network, constructed from a
major-to-occupation network as
Min My j
kmo-kjo

Mmm:Z

J
where k,, o denotes the number of occupations (spread count) associated with each major from

an RCA matrix, and k; represents the number of majors (spread count) associated with each

occupation in the same RCA network. They show that after convergence, the complexity index
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equates to the eigenvector of M that corresponds to the second largest eigenvalue.!”

Note that this relationship does not immediately apply to our application. We initialize k,, o by
an arbitrary specificity index, not necessarily the spread count, and we even do not set any initial
values for occupations, k; . It is interesting that, nonetheless, we observe the MCI is insensitive
to any initialization except for the sign. Clearly, there exists another mathematical nature of the

Method of Reflection yet to be uncovered in this literature, but it is beyond the scope of this paper.

Table B.1: Correlation Among MClIs

MCI_-HHI MCI.TOP3 MCI.GINI MCI_Spread

MCI_HHI 1.0000

MCI_TOP3 1.0000 1.0000

MCI_GINI 1.0000 1.0000 1.0000

MCI_Spread  -1.0000 -1.0000 -1.0000 1.0000

B.2 Network by RCA Matrix

The most important ingredient of the MCI recipe is an informative major-to-occupation network
M, where M, ; represents a link from a major m to an occupation j. To construct this binary matrix,
following the original implementation by Hidalgo and Hausmann|(2009)), we compute the revealed
comparative advantage (RCA) of a major m for an occupation j as

ij/Nm
N;/N

RCA,,j =

where
® N,,; is the number of graduates from a major m who found a job in an occupation j,
e N, is the total number of graduates from major m,

e N, is the total number of graduates in occupation j,

7Note that the context of the original paper is the international trade and nodes represent countries and products.
Here we keep the major/occupation notation to avoid confusion.
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e N is the total number of graduates in the network.

In the binary matrix M, a link between major m and occupation j is recorded (i.e., M,,; = 1) if
RCA,j > 1. Intuitively, a major m forms a link to an occupation j if and only if the fraction of its
graduates placed in j is higher than the average across all the majors.

One important caution in interpreting the Method of Reflections is the assumption that major-
to-occupation mappings are primarily (if not entirely) based on the skills match. That is, for
any major occupation pair, a link exists if and only if the required skills are matched. If some
students, by virtue of family-resource, end up in occupations that they do not qualify for in terms
of skill requirements, it is problematic to infer major values using job placements. The RCA
matrix alleviates such a concern, and is notably robust against such a mismatch, by removing
excess variation and focusing only on significant presences and absences (Hidalgo and Hausmann,
2009; |Hidalgo, [2021; Balland et al., [2022).

This approach offers several advantages over more obvious alternatives, such as setting thresh-
olds based on the absolute number of graduates to form a link (e.g., My,; = 1 if Ny,; > 20) or
setting thresholds based on a ratio (e.g., M,,; = 1 if ]Iv\,—';’ > 0.05). First, the RCA is agnostic to the
population size of nodes. If a fixed count were used as a threshold, a larger major like Engineering
would likely form links with every occupation, while a smaller major like Archaeology would
potentially form no links at all. This approach would undoubtedly result in a loss of valuable
information inherent in the original major-to-occupation flow. In contrast, the RCA allows every
major to have advantages in certain occupations and disadvantages in others, as it uses relative
measures. This feature makes it a more robust and insightful measure for our purposes, as it
captures the nuances of the major-to-occupation network without being influenced by the sheer
size of the majors.

In a related context, the RCA-based network also sidesteps the need for an additional hy-
perparameter related to setting a threshold. This is due to the fact that RCA = 1 carries a clear

interpretation: it represents a comparative advantage against the average over all majors.!® If

131t is possible to set the threshold to be other than 1. The result of our analysis is not sensitive to this choice.
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Ninj

we were to set a threshold on o instead of RCA, we would have to determine the value of the
threshold that best extracts the information from the data. Such a threshold is likely sensitive to
the aggregation method used, which adds another layer of complication. Therefore, an RCA-based
network provides a more intuitive and straightforward means of analysis, thereby avoiding poten-
tial complications from arbitrary thresholds and additional hyperparameters. It thereby ensures
that the approach remains consistent and replicable, regardless of the variations in the dataset or
the aggregation method used.

Another approach that might be considered is to refrain from binarizing the matrix and instead
utilize a weighted graph, either using RCA or raw matrix. However, as Cristelli et al.| (2013)) point
out, it is not obvious which approach best enhances the network’s informativeness in mirroring
underlying activities. While a weighted matrix could theoretically encapsulate more information
by preserving minor flows from a major to occupations, such a link may also be attributed to noise.
Conversely, a binarized matrix concentrates on the most significant links. In other words, while a
weighted graph might encompass more granularity and nuances in data, it might simultaneously
introduce noise that could potentially confound the results. On the other hand, a binarized matrix
simplifies the analysis and focuses on the most dominant links, potentially providing a clearer,
albeit less granular, perspective on the relationships between majors and occupations.

In our analyses, we observed that the MCI demonstrates the highest explanatory power in
terms of both earning and employment when constructed from a binary matrix. This was found to
be superior to a weighted matrix without binarization. We also considered alternatives to RCA!°,
but RCA-based MCI consistently provided the most robust explanatory power. This observation
underscores that the combination of RCA and binary matrix is optimal for making the network

most informative, at least in our context. Consequently, this provides fundamental justification for

the use of RCA and binary matrices in our analyses.

19Results are available upon request.
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Appendix C  MCI Over Iterations

C.1 MCI Ranking Change Over lIteration
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Figure C.1: MCI Ranking Change Over Iteration

50

natural resources management
general education

elementary education
mathematics teacher education
early childhood education
special needs education
teacher education: multiple levels
language and drama education
art and music education
ecology

social work

medical assisting services
nursing

treatment therapy professions
accounting

actuarial science



C.2 Full Ranking of Majors

Table C.1: Major Ranking Over Iteration

Major Code Major Name HHI Ranking HHI Ranking MCI
(Before Iteration)  (After Iteration)
6107 nursing 0.7095 1 157
2312 teacher education: multiple levels 0.5417 2 148
2310 special needs education 0.5086 3 149
2304 elementary education 0.4889 4 159
2305 mathematics teacher education 0.4547 5 125
2419 petroleum engineering 0.4398 6 14
2308 science and computer teacher education 0.4123 7 54
2307 early childhood education 0.4068 8 156
2102 computer science 0.3900 9 1
2314 art and music education 0.3867 10 140
5102 nuclear, industrial radiology, and biological t... 0.3793 11 70
2309 secondary teacher education 0.3678 12 106
2313 language and drama education 0.3587 13 158
6105 medical technologies technicians 0.3517 14 75
2300 general education 0.3499 15 139
2407 computer engineering 0.3483 16 3
6104 medical assisting services 0.3427 17 143
6201 accounting 0.3201 18 102
2406 civil engineering 0.3026 19 6
2101 computer programming and data processing 0.2932 20 50
2414 mechanical engineering 0.2917 21 8
2100 computer and information systems 0.2843 22 25
2311 social science or history teacher education 0.2536 23 122
2401 aerospace engineering 0.2456 24 18
5601 construction services 0.2424 25 12
6202 actuarial science 0.2413 26 92
2105 information sciences 0.2398 27 38
5404 social work 0.2312 28 154
2405 chemical engineering 0.2306 29 5
2106 computer information management and security 0.2250 30 28
2416 mining and mineral engineering 0.2239 31 11
5201 educational psychology 0.2218 32 129
2413 materials engineering and materials science 0.2150 33 17
5008 materials science 0.2127 34 4
6108 pharmacy, pharmaceutical sciences, and administ...  0.2077 35 87
2403 architectural engineering 0.2036 36 7
2408 electrical engineering 0.2035 37 2
6004 commercial art and graphic design 0.2008 38 95
2410 environmental engineering 0.1926 39 33
2306 physical and health education teaching 0.1901 40 74
6109 treatment therapy professions 0.1833 41 124
6212 management information systems and statistics 0.1805 42 19
5901 transportation sciences and technologies 0.1580 43 35
2504 mechanical engineering related technologies 0.1562 44 29
2417 naval architecture and marine engineering 0.1551 45 9
2400 general engineering 0.1366 46 15
2399 miscellaneous education 0.1365 47 58
2418 nuclear engineering 0.1313 48 23
2412 industrial and manufacturing engineering 0.1301 49 24
2409 engineering mechanics, physics, and science 0.1291 50 10
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Table C.2: Major Ranking Over Iteration

Major Code Major Name HHI Ranking HHI Ranking MCI
(Before Iteration)  (After Iteration)

2502 electrical engineering technology 0.1268 51 21
5002 atmospheric sciences and meteorology 0.1226 52 82
1401 architecture 0.1213 53 51
2402 biological engineering 0.1205 54 27
6209 human resources and personnel management 0.1180 55 93
6199 miscellaneous health medical professions 0.1172 56 144
4000 interdisciplinary and multi-disciplinary studie...  0.1139 57 127
2201 cosmetology services and culinary arts 0.1088 58 79
2499 miscellaneous engineering 0.1067 59 16
6207 finance 0.1055 60 100
4002 nutrition sciences 0.1047 61 118
3202 pre-law and legal studies 0.1016 62 107
2404 biomedical engineering 0.1002 63 44
2107 computer networking and telecommunications ~ 0.0897 64 66
4901 theology and religious vocations 0.0895 65 60
3701 applied mathematics 0.0894 66 49
1302 forestry 0.0892 67 31
2500 engineering technologies 0.0888 68 22
5203 counseling psychology 0.0884 69 134
1102 agricultural economics 0.0884 70 45
3702 statistics and decision science 0.0812 71 67
6205 business economics 0.0773 72 89
5301 criminal justice and fire protection 0.0769 73 63
5004 geology and earth science 0.0766 74 53
1902 journalism 0.0759 75 153
5403 human services and community organization 0.0746 76 132
5205 industrial and organizational psychology 0.0721 77 97
4006 cognitive science and biopsychology 0.0712 78 85
2001 communication technologies 0.0712 79 76
5003 chemistry 0.0711 80 42
3605 genetics 0.0708 81 39
2503 industrial production technologies 0.0703 82 20
1100 general agriculture 0.0701 83 40
3700 mathematics 0.0694 84 37
6204 operations, logistics and e-commerce 0.0691 85 47
6211 hospitality management 0.0671 86 142
1101 agriculture production and management 0.0656 87 41
5501 economics 0.0650 88 83
2901 family and consumer sciences 0.0650 89 155
2599 miscellaneous engineering technologies 0.0641 90 13
1105 plant science and agronomy 0.0631 91 34
1103 animal sciences 0.0622 92 59
2501 engineering and industrial management 0.0620 93 26
5007 physics 0.0619 94 30
5701 electrical and mechanic repairs and technologies 0.0618 95 32
5503 criminology 0.0610 96 73
6102 communication disorders sciences and services  0.0609 97 150
6206 marketing and marketing research 0.0573 98 131
6000 fine arts 0.0564 99 119
1904 advertising and public relations 0.0562 100 138
6103 health and medical administrative services 0.0536 101 126
6099 miscellaneous fine arts 0.0530 102 78
1199 miscellaneous agriculture 0.0522 103 72
5005 geosciences 0.0521 104 48
3606 microbiology 0.0514 105 52
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Table C.3: Major Ranking Over Iteration

Major Code Major Name HHI Ranking HHI Ranking MCI
(Before Iteration) (After Iteration)

2602 french, german, latin and other common foreign ...  0.0514 106 136
6210 international business 0.0509 107 113
1104 food science 0.0502 108 65
6005 film, video and photographic arts 0.0493 109 104
6203 business management and administration 0.0483 110 77
5402 public policy 0.0477 111 108
3601 biochemical sciences 0.0472 112 46
4007 interdisciplinary social sciences 0.0470 113 121
6100 general medical and health services 0.0469 114 130
6106 health and medical preparatory programs 0.0461 115 81
3603 molecular biology 0.0453 116 57
5599 miscellaneous social sciences 0.0449 117 88
6299 miscellaneous business and medical administration  0.0447 118 80
6200 general business 0.0446 119 69
5505 international relations 0.0444 120 116
6007 studio arts 0.0441 121 91
6006 art history and criticism 0.0440 122 145
5507 sociology 0.0439 123 137
1901 communications 0.0437 124 147
6003 visual and performing arts 0.0430 125 152
3302 composition and speech 0.0426 126 135
3609 zoology 0.0425 127 71
5200 psychology 0.0424 128 146
3301 english language and literature 0.0421 129 151
5202 clinical psychology 0.0419 130 141
5504 geography 0.0419 131 36
1903 mass media 0.0413 132 117
5506 political science and government 0.0407 133 98
3699 miscellaneous biology 0.0407 134 55
3608 physiology 0.0405 135 99
3401 liberal arts 0.0401 136 110
5401 public administration 0.0399 137 105
6002 music 0.0398 138 103
5500 general social sciences 0.0396 139 111
6110 community and public health 0.0394 140 94
5006 oceanography 0.0387 141 56
1501 area, ethnic, and civilization studies 0.0385 142 133
6001 drama and theater arts 0.0384 143 123
4001 intercultural and international studies 0.0382 144 120
1301 environmental science 0.0378 145 64
5299 miscellaneous psychology 0.0375 146 128
3611 neuroscience 0.0371 147 86
2603 other foreign languages 0.0357 148 112
1303 natural resources management 0.0355 149 43
4101 physical fitness, parks, recreation, and leisure 0.0355 150 84
6402 history 0.0354 151 90
3402 humanities 0.0354 152 115
3600 biology 0.0353 153 68
2601 linguistics and comparative language and litera... ~ 0.0352 154 114
6403 united states history 0.0344 155 101
4801 philosophy and religious studies 0.0335 156 109
5098 multi-disciplinary or general science 0.0332 157 61
3604 ecology 0.0328 158 62
5502 anthropology and archeology 0.0315 159 96
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C.3 Regression Analysis Over lIterations

Table C.4: Earning and Employment Return on the MCI - Over Iterations

H 2 3) “4) (&)
Panel A: DV - log of Annual Income (2010 $)
MCl.iter_2 0.0067
(0.0067)
MCl.iter_ 4 0.0052
(0.0064)
MCl.iter_10 0.0490%:**
(0.0071)
MCliter_20 0.0801 ***
(0.0053)
MCl.iter_50 0.0819%***
(0.0060)
R-squared Adj.  0.1201 0.1200 0.1253 0.1326 0.1335

Panel B: DV - Full-time Working Status

MClLiter_2 0.0023*
(0.0012)
MCL iter_4 0.0020%
(0.0012)
MCLiter_10 0.0103%*
(0.0014)
MCL iter_20 0.0155%%x
(0.0010)
MCL iter_50 0.0156%**
(0.0012)
R-squared Adj.  0.0398 0.0398 0.0405 0.0412 0.0412

Note: The dependent variable in Panel A is the natural log of annual income in 2010
dollars, with 1,999,140 observations. The dependent variable in Panel B is the full-time
working status with 2,591,343 observations. Gender, White, Hispanic, quadratic function
of potential experience, and year-fixed effects are controlled for in all specifications.
The MCIs over iterations are computed from a network connecting detailed ACS majors
(which mostly correspond to CIP4) and detailed occupation categories (SOC4). Standard
errors are clustered at the major-year level. Significance is as follows: one-percent=**%*,
five-percent=**, and ten-percent=*.
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Appendix D Robustness of Table 3

Table D.1: Earning and Employment Return on the MCI - Age 25-30

(1) (2 (3) “4) (5) (6) (7) (8)
Panel A: DV - log of Annual Income (2010 $)
MCI_25-30 0.0843%**:* 0.0931***  (0.0819***  (,0834***  (.0979***
(0.0076) (0.0049) (0.0063) (0.0075) (0.0070)
HHI 0.0257%*** 0.0368*** 0.0520%***
(0.0050) (0.0053) 0.0177)
TOP3 0.0431%** 0.0397%#*:* -0.0179
(0.0056) (0.0063) (0.0181)
GINI 0.0762%** 0.0534%** -0.0042
(0.0180) (0.0214) (0.0149)
R-squared Adj. 0.1338 0.1224 0.1252 0.1206 0.1389 0.1383 0.1341 0.1390

Panel B: DV - Full-time Working Status

MCI_25-30 0.0154%** 0.0178***  0.0152*%**  (0.0154***  0.0212%%**
(0.0015) (0.0010) (0.0012) (0.0015) (0.0014)

HHI 0.0061*** 0.0086%** 0.0188***
(0.0010) (0.0010) (0.0033)

TOP3 0.0090%#* 0.0088*7#* -0.0111%**
(0.0012) (0.0013) (0.0037)

GINI 0.0026 -0.0015 -0.0167***
(0.0044) (0.0048) (0.0032)
R-squared Adj. 0.0412 0.0402 0.0405 0.0398 0.0420 0.0418 0.0412 0.0422

Note: The dependent variable in Panel A is the natural log of annual income in 2010 dollars, with 1,999,140 observations. The
dependent variable in Panel B is the full-time working status with 2,591,343 observations. Gender, White, Hispanic, quadratic function
of potential experience, and year-fixed effects are controlled for in all specifications. The MCI and other indexes are computed from
a network connecting detailed ACS majors (which mostly correspond to CIP4) and detailed occupation categories (SOC4), and
important from a sample that consists of individuals between ages 25-30 instead of 25-35 as adopted in the main analysis. Standard
errors are clustered at the major-year level. Significance is as follows: one-percent="*** five-percent=**, and ten-percent="*.
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Table D.2: Earning and Employment Return on the MCI - Within Occupation

(D 2 3 4 Q) (6) ) 3
DV - log of Annual Income (2010%)
MCI 0.0452%#%%* 0.0468%**  (0.0412%*%*  0.0441*%**  (0.0390%**
(0.0027) (0.0026) (0.0027) (0.0027) (0.0033)
HHI 0.0198**:* 0.0217%** -0.0079
(0.0024) (0.0019) (0.0079)
TOP3 0.0310%** 0.0267#*%** 0.0347%**
(0.0027) (0.0022) (0.0089)
GINI 0.0512%%*%* 0.0336%** 0.0123
(0.0108) (0.0105) (0.0114)
SOC2 FE Yes Yes Yes Yes Yes Yes Yes Yes
R-squared Adj. 0.2537 0.2515 0.2526 0.2507 0.2551 0.2553 0.2538 0.2553

Note: The dependent variable is the natural log of annual income in 2010 dollars, with 1,999,140 observations. Gender, White,
Hispanic, quadratic function of potential experience, and year-fixed effects are controlled for in all specifications. The MCI and
other indexes are computed from a network connecting detailed ACS majors (which mostly correspond to CIP4) and detailed
occupation categories (SOC4). Standard errors are clustered at the major-year level. Significance is as follows: one-percent="**%*,
five-percent=**, and ten-percent=*.

Table D.3: Correlation Among MClIs from Different Aggregation

MCIDetailedMajor MCIDetailedMajor MCICoarseMajor MCICoarseMajor

SOC4 S0C2 S0C4 S0C2
MCIgoledMajor 1.0000
MCToealedMarer 0.9046 1.0000
MCISeseMaior 0.8314 0.7711 1.0000
MCISgeeMaror 0.8170 0.7998 0.9544 1.0000

Note: The MClIs reported in this table are computed from different networks. These networks
vary based on whether the major is coded at a coarse (ACS variable degfield which corresponds
to CIP2) or detailed level (ACS variable degfieldd which mostly corresponds to CIP4) and
whether the occupation is measured at a coarse (SOC2) or detailed level (SOC4).
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Table D.4: Earning and Employment Return on the MCI - Controlling for Major Categories and
Occupation

(D (2 (3) “4) (5
DV - log of Annual Income (2010$)
MCI 0.0452%** 0.0448*** 0.0204***
(0.0027) (0.0038) (0.0046)
STEM 0.0736*** 0.0012
(0.0075) (0.0087)
Arts and Humanities -0.0221%** -0.0070
(0.0107) (0.0107)
Business 0.0929%**  (0,0952%**
(0.0110) (0.0107)
Education -0.0600%**  -(0.0390%***
(0.0100) (0.0098)
Engineering 0.2132%*%*  (.1808**%*
(0.0110) (0.0137)
Professional 0.1036***  (0.1176%**
(0.0116) (0.0124)
Science 0.0621***  (0.0428%**
(0.0119) (0.0108)
Social Science 0.0589%**  (,0710%**
(0.0152) (0.0144)
SOC2 FE Yes Yes Yes Yes Yes
R-squared Ad;. 0.2537 0.2519 0.2537 0.2584 0.2587

Note: The dependent variable is the natural log of annual income in 2010 dollars, with
1,999,140 observations. Gender, White, Hispanic, quadratic function of potential experience,
and year-fixed effects are controlled for in all specifications. The MCI is computed
from a network connecting detailed ACS majors (which mostly correspond to CIP4) and
detailed occupation categories (SOC4). Standard errors are clustered at the major-year level.
Significance is as follows: one-percent=***, five-percent=**, and ten-percent=%*.
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Appendix E Major Complexity Index Rankings Over Time

Table E.1: MCI Ranking Over Time

Major Code Major Name 2009-2013  2015-2019
2408 electrical engineering 1 4
2407 computer engineering 2 2
2419 petroleum engineering 3 11
2414 mechanical engineering 4 13
2102 computer science 5 3
2403 architectural engineering 6 35
2413 materials engineering and materials science 7 18
2100 computer and information systems 8 15
2406 civil engineering 9 1
2409 engineering mechanics, physics, and science 10 29
2412 industrial and manufacturing engineering 11 41
2400 general engineering 12 8
2502 electrical engineering technology 13 5
5601 construction services 14 9
2401 aerospace engineering 15 26
2503 industrial production technologies 16 27
2599 miscellaneous engineering technologies 17 16
2504 mechanical engineering related technologies 18 30
2418 nuclear engineering 19 7
2500 engineering technologies 20 14
2405 chemical engineering 21 6
2417 naval architecture and marine engineering 22 10
2499 miscellaneous engineering 23 22
2501 engineering and industrial management 24 21
5008 materials science 25 23
5007 physics 26 17
1105 plant science and agronomy 27 37
2410 environmental engineering 28 32
5701 electrical and mechanic repairs and technologies 29 19
1100 general agriculture 30 44
1302 forestry 31 38
6212 management information systems and statistics 32 28
2105 information sciences 33 12
1101 agriculture production and management 34 48
2402 biological engineering 35 31
2106 computer information management and security 36 24
2416 mining and mineral engineering 37 25
5901 transportation sciences and technologies 38 20
1303 natural resources management 39 42
3606 microbiology 40 67
1401 architecture 41 33
6204 operations, logistics and e-commerce 42 55
5004 geology and earth science 43 45
2399 miscellaneous education 44 51
1102 agricultural economics 45 63
5005 geosciences 46 46
3701 applied mathematics 47 36
2107 computer networking and telecommunications 48 73
5003 chemistry 49 43
3601 biochemical sciences 50 52
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Table E.2: MCI Ranking Over Time

Major Code Major Name 2009-2013  2015-2019
5504 geography 51 34
2101 computer programming and data processing 52 40
1103 animal sciences 53 70
3700 mathematics 54 53
5006 oceanography 55 75
5301 criminal justice and fire protection 56 47
3702 statistics and decision science 57 65
2308 science and computer teacher education 58 78
6200 general business 59 76
3600 biology 60 66
6299 miscellaneous business and medical administration 61 84
2404 biomedical engineering 62 39
3699 miscellaneous biology 63 59
3605 genetics 64 58
6203 business management and administration 65 80
1301 environmental science 66 50
5002 atmospheric sciences and meteorology 67 77
1199 miscellaneous agriculture 68 92
3604 ecology 69 68
5098 multi-disciplinary or general science 70 57
5102 nuclear, industrial radiology, and biological t... 71 56
1104 food science 72 61
6004 commercial art and graphic design 73 114
3603 molecular biology 74 54
5501 economics 75 85
6205 business economics 76 94
2201 cosmetology services and culinary arts 77 89
3609 zoology 78 74
6201 accounting 79 101
2001 communication technologies 80 64
2306 physical and health education teaching 81 82
2309 secondary teacher education 82 147
6207 finance 83 118
4101 physical fitness, parks, recreation, and leisure 84 79
4901 theology and religious vocations 85 49
5503 criminology 86 72
6210 international business 87 102
6209 human resources and personnel management 88 87
6402 history 89 88
6007 studio arts 90 81
6110 community and public health 91 98
4801 philosophy and religious studies 92 106
6105 medical technologies technicians 93 60
6099 miscellaneous fine arts 94 71
2603 other foreign languages 95 115
5500 general social sciences 96 107
5401 public administration 97 91
2601 linguistics and comparative language and litera... 98 123
5402 public policy 99 127
4006 cognitive science and biopsychology 100 119
3611 neuroscience 101 86
5502 anthropology and archeology 102 110
6106 health and medical preparatory programs 103 90
6202 actuarial science 104 69
6000 fine arts 105 108
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Table E.3: MCI Ranking Over Time

Major Code Major Name 2009-13  2015-2019
6002 music 106 103
6211 hospitality management 107 141
5506 political science and government 108 96
4001 intercultural and international studies 109 122
4007 interdisciplinary social sciences 110 124
1903 mass media 111 121
6108 pharmacy, pharmaceutical sciences, and administ... 112 62
6001 drama and theater arts 113 129
6005 film, video and photographic arts 114 83
3608 physiology 115 97
3401 liberal arts 116 93
5599 miscellaneous social sciences 117 111
6103 health and medical administrative services 118 130
6100 general medical and health services 119 117
2311 social science or history teacher education 120 100
6206 marketing and marketing research 121 151
4002 nutrition sciences 122 112
5505 international relations 123 116
5299 miscellaneous psychology 124 134
5205 industrial and organizational psychology 125 125
3302 composition and speech 126 136
3402 humanities 127 104
6403 united states history 128 99
2300 general education 129 135
6199 miscellaneous health medical professions 130 113
1904 advertising and public relations 131 146
2602 french, german, latin and other common foreign ... 132 126
1501 area, ethnic, and civilization studies 133 131
6003 visual and performing arts 134 137
3301 english language and literature 135 148
3202 pre-law and legal studies 136 105
1901 communications 137 154
4000 interdisciplinary and multi-disciplinary studie... 138 120
2312 teacher education: multiple levels 139 138
6006 art history and criticism 140 143
5507 sociology 141 133
5403 human services and community organization 142 132
6109 treatment therapy professions 143 95
2305 mathematics teacher education 144 109
5200 psychology 145 139
5202 clinical psychology 146 152
2310 special needs education 147 158
5203 counseling psychology 148 153
1902 journalism 149 150
2313 language and drama education 150 145
6104 medical assisting services 151 142
5201 educational psychology 152 149
2314 art and music education 153 128
2307 early childhood education 154 157
6102 communication disorders sciences and services 155 140
5404 social work 156 144
2901 family and consumer sciences 157 155
6107 nursing 158 156
2304 elementary education 159 159
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Appendix F NSSE Data Descriptive and Selection Exercise 1

To check the robustness of our main result in Table [3|and further understand the Major Complexity
Indices, we exploit pooled data from the National Survey of Student Engagement (NSSE) for the
years 2005-2011.2° Our final NSSE sample contains 93,193 full-time seniors, who are between the
ages of 18 and 23, and with no double major.”! NSSE contains rich student-level data on the types
of assignments and tasks performed across majors and information on students’ backgrounds.

We compute the major average of SAT scores, parental education, and percent of international
students for each major as well as major characteristics surveyed from students, such as knowledge
and skills developed through college education and hours spent on coursework at the CIP2 level,
and merge with our ACS sample. In total, we are able to match 22 majors (out of 22 majors in
NSSE; out of 38 majors in ACS) using CIP2 between the two datasets.?23

Table [F.I] below shows the first selection exercise using major-level ability and preference
proxies. The results are similar to our main results. As shown in Panel A, the income return to
MClI is 10.15% with basic controls in this sample, and it decreases to 8.25% when major average
SAT scores, parental education levels, and percent of international students are controlled for. The

employment return in Panel B is also similar across the two columns.

20The confidential data from the NSSE contains no individual institution or student identifier and can be obtained
by application. See https://nsse.indiana.edu/nsse/index.html for more details.

2lTwo small majors, Library/archival science (4 students) and Undecided (17 students), are dropped.

22The CIP2 majors that are in ACS but not NSSE include 10) communications technologies/technicians and
support services. 12) personal and culinary services. 19) family and consumer sciences/human sciences. 22) legal
professions and studies. 25) library science. 29) military technologies. 31) parks, recreation, leisure, and fitness
studies. 39) theology and religious vocations. 41) science technologies/technicians. 43) security and protective
services. 44) public administration and social service professions. 46) construction trades. 47) mechanic and repair
technologies/technicians. 48) precision production. 49) transportation and materials moving. 51) health professions
and related clinical sciences.

BIf we instead merge at the CIP4 level, we are able to match 48 majors (out of 60 majors in NSSE; out of 159
majors in ACS) using CIP4 between the two datasets.
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Table F.1: Earning and Employment Return on the MCI - Controlling Major-Level Features from
NSSE

(1) (2)
Panel A: DV - log of Annual Income (2010 $)
MCI 0.1015%%%  (0.0825%*:*
(0.0039) (0.0045)
SAT_V 0.0033:%3%*
(0.0004)
SAT M 0.0012%%*
(0.0003)
InternationalStudent 1.0409%***
(0.3568)
Edu_Father -2.3485%**
(0.2617)
Edu_Mother -0.0659
(0.2010)
R-squared Adj. 0.1460 0.1507

Panel B: DV - Full-time Working Status

MCI 0.0195%**  (0.0188%***
(0.0008) (0.0008)
SAT_V -0.0004 ***
(0.0001)
SAT M 0.0010%**
(0.0001)
International Student -0.7826%**
(0.0778)
Edu_Father -0.4873 %%
(0.0438)
Edu_Mother 0.0522
(0.0371)
R-squared Adj. 0.0448 0.0472

Note: The dependent variable in Panel A is the
natural log of annual income, with 1,697,541 ob-
servations. The dependent variable in Panel B is
the full-time working status with 2,198,729 obser-
vations. Gender, White, Hispanic, quadratic func-
tion of potential experience, and year-fixed effects
are controlled in all specifications. The MCI is
computed from a network connecting detailed-level
ACS majors (which mostly correspond to CIP4)
and detailed occupation categories (SOC4). Stan-
dard errors are clustered at the major-year level.
Significance is as follows: one-percent=***, five-
percent=**, and ten-percent=*.

67



Appendix G NLSY97 Data Descriptive and Selection Exercise 2

To further check the robustness of our main result in Table |3] we merge the MCI computed from
the ACS, constructed from the coarse major (variable degfield) and detailed occupation (SOC4),
with the National Longitudinal Survey of Youth 1997 (NLSY97), which collects extensive infor-
mation on individuals’ educational experience and labor market outcomes, particularly concerning
preexisting abilities and academic qualifications.?*

Following the approach of Light and Schreiner (2019), we identify each individual’s college
major by cycling through the Post-Secondary Transcript Study (PTRAN) degree variables. These
variables are recorded as two-digit College Course Map (CCM) codes across all institutions as-
sociated with an individual. When degree variables are missing or recorded as “liberal arts and
sciences, general studies and humanities” (CCM code=24), which applies to approximately 62% of
the sample, we then cycle through the PTRAN field of study variables, which capture information
from different transcript sections. In the end, we successfully identify the college major for 891
individuals. These individuals only have bachelor’s degrees, have no missing information about
their college major, and do not have double majors from any institutions. We manage to match
36 majors (out of 37 majors in NLSY97; out of 38 majors in ACS) using CIP2 between ACS
and NLSY97 datasets.” It’s worth noting that there are 8 majors each containing fewer than 5
individuals. Due to the small sample size (as explained below), we included all matched majors.

Our analysis begins with 891 individuals, yielding 16,929 individual-by-year observations, all
of whom have valid college major information. Restricting the data to observations of individ-
uals older than 25 years, who have already obtained a bachelor’s degree within the years, and
who are not currently enrolled in school, we are left with 880 individuals, accounting for 6,160
individual-by-year observations. For income analysis, as demonstrated in Table Panel A, our

sample reduces to 371 individuals (representing 2,252 observations), all of whom are working

24The public-use data from the NLSY97 can be downloaded at https://www.nlsinfo.org/investigator/
pages/login.

2 The CIP2 majors present in ACS but absent in NLSY97 include 25) library science and 48) precision production.
Conversely, the CIP2 majors present in NLSY97 but absent in ACS include 32) basic skills.
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full-time, earning at least $500 annually, and have no missing information on the covariates. For
the employment analysis (Table[G.1]Panel B), the sample consists of 390 individuals (representing
3,086 observations).

Although our sample size is significantly smaller, the results align with our main analysis. A
one standard deviation increase in the MCI results in approximately a 7-8% increase in salary
and enhances the probability of full-time employment by approximately 5%. These estimates are
adjusted based on ability measures (SAT/ACT, AFQT score, HS GPA) and household information
(average household income during ages 15-19, parental education). These adjustments are very
similar to the estimates with basic controls presented in column (1). Using more detailed proxies
for ability, such as SAT Verbal and Math scores, the 10 components of the ASVAB test scores,
and HS GPA in specific fields including English, foreign language, math, social science, and life
science, does not significantly alter the results. However, it does result in a much smaller sample

size due to the absence of observations.
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Table G.1: Earning and Employment Return on the MCI - Controlling Individual Features from

NLSY
1) () (3) (4) (5) (6)
Panel A: DV - log of Annual Income (2010 $)
MCI 0.0859***  0.0781***  0.0767*** 0.0806***  0.0843***  (.0753%%*
(0.0175) (0.0174) (0.0175) (0.0170) (0.0175) (0.0175)
SAT_ACT 0.07027%** 0.0107
(0.0155) (0.0213)
AFQT 0.0033%** 0.0015%*
(0.0005) (0.0007)
HS_GPA Overall 0.1590%#** 0.1136%**
(0.0321) (0.0395)
logHH Income (Age 15-19) 0.0504** 0.0509%%**
(0.0198) (0.0194)
Edu_Father 0.0169%** 0.0117%*
(0.0057) (0.0057)
Edu_Mother -0.0020 -0.0003
(0.0052) (0.0051)
R-squared Adj. 0.1924 0.1995 0.2021 0.2010 0.2014 0.2113
Panel B: DV - Full-time Working Status
MCI 0.0505%**  0.0536***  (0.0520%**  0.0498***  0.0510***  (.0523***
(0.0084) (0.0083) (0.0082) (0.0083) (0.0083) (0.0080)
SAT_ACT -0.0273%** -0.0284**
(0.0101) (0.0142)
AFQT -0.0006* -0.0000
(0.0003) (0.0005)
HS_GPA _Overall 0.0145 0.0446%*
(0.0185) (0.0218)
logHH Income (Age 15-19) -0.0161%* -0.0138%*
(0.0072) (0.0074)
Edu_Father -0.0140%**  -0.0134%***
(0.0043) (0.0042)
Edu_Mother 0.0057 0.0069*
(0.0037) (0.0036)
R-squared Adj. 0.0427 0.0450 0.0432 0.0426 0.0492 0.0509

Note: The dependent variable in Panel A is the natural log of annual income, with 2,252 observations. The
dependent variable in Panel B is the full-time working status with 3,086 observations. Gender, White, Hispanic,
quadratic function of potential experience, and year-fixed effects are controlled in all specifications. The MCI
is computed from a network connecting coarse-level ACS majors (which correspond to CIP2) and detailed
occupation categories (SOC4). Standard errors are clustered at the major-year level. Significance is as follows:
one-percent=***_ five-percent=**, and ten-percent=*. Using detailed ability proxies such as SAT_V and SAT_M;
10 components of ASVAB test scores; HS GPA in detailed fields including English, foreign language, math, social
science, and life science, do not significantly change the results, although it results in a much smaller sample without
missing observations.
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