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Abstract

Prices in many industries adjust slowly to changes in marginal costs. We consider the

implications of price dynamics in the context of demand estimation, merger simulation,

and cost pass-through. For the analysis, we develop an empirical model of dynamic

consumer demand with oligopolistic competition. The model builds on the standard

discrete-choice model and requires no supply-side assumptions to estimate, in contrast

to existing methods, such as Bajari et al. (2007). We estimate the model using data

on retail gasoline, where we find strong evidence of dynamic pricing. We demonstrate

that welfare analysis depends critically on properly accounting for demand dynamics.

Ignoring dynamic behavior results in upwardly biased predictions of merger price effects.
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1 Introduction

Prices in a wide array of industries have been documented to react slowly to cost chan-

ges. Grocery stores (Peltzman, 2000), retail gasoline (Borenstein et al., 1997), and banking

(Neumark and Sharpe, 1992) are just a few examples of markets where firms gradually

pass through marginal cost shocks to consumers. While dynamically adjusting prices are an

important feature of these markets, the demand estimation literature has largely ignored

this property. The consequences of ignoring dynamics are three-fold. First, demand estima-

tion may rely upon misspecified static optimization conditions, which can bias parameter

estimates and fail to capture first-order incentives for policy changes. Second, static models

will be unable to reproduce relevant short-run price dynamics, which can have important

consumer welfare consequences in markets with frequently changing costs. Finally, pass-

through estimates may fail to properly capture the completeness of the price adjustment

when anticipation is not accounted for.

In this article, we develop and estimate an empirical model of dynamic demand. In

response to demand-side behavior, profit-maximizing firms adjusting prices over many time

periods in response to a cost change. The model also produces other important pricing

patterns, such as price responses prior to anticipated future cost changes. The demand-side

model includes a subset of consumers that become attached to the firm from which they

purchased in the previous period, creating an incentive for firms to sacrifice current profits

for future gains from the attached consumers. Our model of attachment can be used to

describe brand loyalty, habit formation, lock-in, or search costs. This feature, which we

call “lock-in” for the remainder of the paper, leads to firms in oligopolistic markets slowly

adjusting prices to changes in cost.

The demand model is a straightforward extension of the standard discrete-choice logit

model common in industrial organization. In our steady-state analysis, we show that opti-

mal prices may either be higher or lower in the dynamic model compare to a static model,

depending on the relative price sensitivity of locked-in consumers to consumers that are

not locked-in. Given the parameters we estimate in the empirical application, we find that

lock-in leads to higher markups in retail gasoline markets.

We consider mergers in the context of our model using numerical simulations in a duo-

poly setting. First, we demonstrate that the presence of lock-in in duopolistic competition

may increase prices more than a merger to monopoly would in a static model. Second, we

show that the relative price effect of a merger has non-monotonic patterns,1 which is rele-

vant for the consideration of antitrust authorities. The percent price effect of a merger may

either increase or decrease with the lock-in probability. When consumers are sufficiently

price insensitive, then lock-in allows firms to capture a large portion of the monopoly rents

1Absolute prices increase monotonically with the degree of lock-in.
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pre-merger, resulting in a smaller impact of the merger on prices.

Next, we consider the empirical implications of failing to account for dynamic demand in

a merger analysis. In our exercise, we calibrate a static demand model to data generated by

our dynamic model and perform a merger simulation. Compared to the true impact of the

merger, the (incorrect) static logit model systematically over-predicts merger price effects.

In the dynamic model, the incentive to invest in future demand pushes prices down, and this

effect remains after the merger. The static model falsely attributes a portion of this incentive

to competition, which disappears post-merger, resulting in higher prices. Our analysis of

mergers builds on the existing theoretical work on dynamic price competition (see, e.g.,

Farrell and Shapiro (1988), Beggs and Klemperer (1992), and Bergemann and Välimäki

(2006)). Hendel and Nevo (2013) estimate an empirical model with dynamic pricing and

discuss biases that could arise in a merger context. In relation to their paper, one of the

distinguish factors is that we focus on settings with consumer loyalty, where purchases are

positively correlated over time, rather than their setting with consumer stockpiling.

Our model can be taken to data, which we demonstrate through an empirical analysis

of retail gasoline markets. We advance the empirical literature by developing an estimation

method that accommodates dynamic demand, but does not require the assumptions used

in standard dynamic estimation techniques, such as those developed by Bajari et al. (2007)

and Pakes et al. (2007), to identify the dynamic parameters. Importantly, we do not require

supply-side assumptions about the competitive game or the expectations of the firms to

estimate demand. As supply-side behavior depends crucially on whether future shocks are

expected or unexpected, we view this as a significant advantage.

The data needed to estimate the model are commonly used in the demand estimation

literature, namely, prices, shares and cost shifters (or, alternatively, product characteristics).

Nonetheless, we show that with firm-level shares (across all customer types), it is possible to

separately identify each firms’ current shares of locked-in and non-locked-in customers, as

well as the probability that a consumer becomes locked-in after purchasing. Identification

of locked-in customers allows for the presence of a serially correlated state variable for each

firm. In other words, we estimate a model with endogenous unobserved heterogeneity. This

flexibility has traditionally been a challenge for the estimation of dynamic models.

We estimate the model using a rich panel data set of prices, shares, and costs for retail

gasoline stations. In this context, the model is best interpreted as one of habit formation or

search costs, wherein some consumers return to the gas station from which they previously

purchased without considering alternative sellers. We estimate that 76 percent of consumers

only consider the gas station from which they previously purchased on a week-to-week basis,

without searching competitors. On average, 98 percent of locked-in customers purchase

gasoline, compared to only 34 percent of customers that are not locked-in ("free agents").

Locked-in customers display a much lower price sensitivity. Free-agent customers have an
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average elasticity of -8.1, whereas locked-in customers have an average elasticity of -0.03.

To highlight the importance of accounting for dynamic factors when estimating per-

period firm payoffs, we impose a supply-side model, and we use the model-estimated static

component of profits to estimate the dynamic component of the firms’ first-order conditions.

We project these estimates onto state variables to estimate how the dynamic incentives vary

over time. Using this estimated function, we perform a merger analysis between two of the

brands in our data. Relative to a static analysis, we find small effects from the merger. The

merger increases both the static incentive to increase prices and the dynamic investment

incentive to lower prices. Thus, the dynamic incentives serve to mitigate the static effects

that arise from a merger.

Prior to developing our model, we present reduced-form evidence on dynamic pricing,

in terms of cost pass-through, in retail gasoline markets. We use the data to separate out

expected and unexpected costs, and we show that firms respond differentially to these two

measures. Importantly, firms begin raising prices in anticipation of higher costs approxi-

mately 28 days prior to a cost shock. Firms exhibit “full” pass-through for expected cost

changes, raising prices by 1.02 dollars for each dollar increase in cost. We find that the the

pass-through of unexpected costs is limited, with firms raising prices by only 0.66 cents for

an unexpected dollar increase in costs. We explore heterogeneity in firm pass-through and

how it relates to the competitive conditions in the market.

2 A Oligopoly Model of Dynamic Demand

2.1 Demand Side

We develop a dynamic model of oligopolistic competition with product differentiation where

consumers may become locked in to the firm from which they previously purchased. Lock-in

may be interpreted as customer loyalty, habit formation, or a cost of search. Customers in

the model are myopic in that they maximize current period utility rather than a discounted

flow of future utility. This assumption is likely a good fit for retail gasoline markets, where

consumers do not choose a gas station anticipating that it will limit their future choice set;

rather, some consumers are likely to return to the same gas station due to habit formation

or costly search behavior. As detailed below, we introduce differentiated product demand

using the standard logit model, and then place the demand model into a dynamic oligopoly

setting. The dynamics stem from firms current sales affecting future profits through the

accumulation of locked-in consumers. We then demonstrate how common properties of

cost pass-through (such as sticky prices, adjustment to expected cost shocks, and estimates

of long-run pass-through) differ in this dynamic setting as compared to static environments.2

2Slade (1998) estimates a model of habit-forming consumers and sticky prices. That model, however, expli-
citly imposes a cost of price-adjustment. Our model does not rely upon a menu cost to explain dynamic price
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The demand-side is characterized by the standard logit model,3 but a fraction of consu-

mers, δ, become locked-in to the firm from which they purchased in the previous period. We

assume that consumers that purchase the outside good in period t − 1 are never locked-in

at time t. Consumers that are not locked-in, which we will refer to as “free agents,” have

utility u(n)jt = ξj − αpjt + ηjt + ε
(n)
jt from purchasing from any inside firm j ∈ {1, .., J} or

the outside good, j = 0. The superscript (n) indicates customer-specific values. For locked-

in consumers, the utility from purchasing good j conditional on purchasing good i in the

previous period is:

u
(n)
jt = ξj + 1[j = i]ξ̄ − (α+ 1[j = i]ᾱ)pjt + ηjt + ε

(n)
jt . (1)

Locked-in customers therefore experience a relative level utility shock ξ̄ and a relative

price sensitivity shock ᾱ. The relative utility shock, ξ̄, may be interpreted as a switching cost,

a brand-loyalty effect, or a cost of search where “non-searches” are more likely to return to

their previously visited gas station without checking other prices.

For both free agents and locked-in consumers, we normalize the utility of the outside

good to be zero. In our model, we include a product-time shock ηjt, which allows for

potential correlation in unobservable utility shocks over time.

We denote the choice probability of a free-agent as sjt(0) and locked-in consumer as

sjt(i), where i denotes the firm to which a customer is locked in and 0 denotes that a

consumer is a free-agent. For ease of notation, we define ξjt = ξj−αpjt+ηjt and ξjt+ ξ̄jt =

ξj + ξ̄ − (α + ᾱ)pjt + ηjt. Then, given the standard logit assumption of a type 1 extreme

value distribution on the utility shock, ε(n)jt , the market shares of free agents and locked-in

consumers are:

sjt(0) =
exp(ξjt)

1 +
∑
k exp(ξkt)

(2)

sjt(i) =
exp(ξjt + 1[j = i]ξ̄jt)

1 +
∑
k/i exp(ξkt) + exp(ξit + ξ̄jt)

. (3)

The observable share for firm j is then given by the average of these two components,

where each component is weighted by the relative proportion of customers in the free-agent

or the locked-in state.

adjustments.
3In future versions, we plan to generalize the model to either the nested or random coefficients logit model.

5



2.2 Supply Side

Given the demand model above, firm j’s profit-maximization problem can be written as

follows:

max
pjt
{E[

∞∑
t=0

βtΠ(pt, rt, ct)]}.

In this equation, pt, rt, and ct are vectors of each firm’s prices, total number of locked-in

consumers, and marginal costs, respectively, at time t. Thus, firms compete by choosing pri-

ces that maximize expected discounted profits, where firms anticipate both future marginal

costs and how current choices affect the future state of locked-in consumers.

The profit-maximization problem can be rewritten in Bellman equation form. To do so,

we first define firm j’s total share as:

Sjt = (1−
∑
k

rkt)sjt(0) +
∑
i=1

ritsjt(i). (4)

Thus, a firm’s total share of sales can be written as a weighted sum of its share of free

agent, sjt(0), and locked-in consumers, sjt(i). Note that firm j will make sales to consumers

locked-in to other firms j 6= i, but the probability that such consumers will choose firm j

is strictly lower than the choice probability of a free-agent consumer. We then define the

number of consumers locked-in to firm j at t + 1 to simply be rjt+1 = δSjt. A fraction of

a firms previous period consumers, δ, become locked-in next period, and therefore today’s

sales affect tomorrow’s profits. This is captured in the following Bellman equation:

Vj(r, c) = max
pjt|pkt 6=jt

{
(pjt − cjt)Sjt + βE(Vj(rt+1, ct+1)|pt, rt, ct)

}
. (5)

In this Bellman formulation, firms optimal prices depend upon the number of consumers

currently locked-in to each firm, rjt and each firm’s marginal cost cjt, which enter as state

variables. We therefore must solve for J optimal pricing policies conditional on 2J state

variables. Note also that the optimal choice of prices depends essentially on the expectations

of future costs, ct+1. One contribution of the empirical work is to disentangle expected and

unexpected costs to shed light on the sensitivity of dynamic welfare analysis to the proper

accounting of expectations.

2.3 Steady-State Analysis

2.3.1 Monopoly

While solving for the optimal pricing policy in oligopoly markets is analytically intractable,

we analyze steady-state prices in a monopoly market (with an outside good) to develop
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intuition about the impact locked-in consumers have on optimal prices and markups.

In the steady state, rjt = rjt+1 = rj and cjt = cjt+1 = cj . To simplify notation in the

monopoly case, let the firm’s share of locked-in and free-agent consumers be sj and s0,

respectively, and its number of locked-in consumers be rt. It follows that the steady-state

number of locked-in consumers, rss is:

r = δ((1− r)s0 + r · sj)

rss =
δs0

1− δ(sj − s0)
.

The steady-state number of locked-in consumers is increasing in the probability of be-

coming locked in, δ, and the (absolute value) of the gap between the choice probabilities

of locked-in customers and free agents, sj − s0. Using the steady-state value of locked-in

consumers, we can solve for the steady-state pricing function.

The steady state period value is:

V ss(rss, css) = (pss − css)((1− rss)s0 + rsssj) + βV ss

=
pss − css

1− β
· s0

1− δ(sj − s0)
.

This equation represents the monopolists discounted profits, conditional on costs remai-

ning at its current level. Thus, profits are increasing in both δ and the difference in choice

probabilities of locked-in and free-agent consumers. These results are straight-forward:

lock-in is profitable. Also, note that a model with no lock-in is embedded in this formula-

tion (δ = 0 and sj = s0), in which case profits are simply the per-unit discounted profits

multiplied by the firm’s market share.

Maximizing the steady-state value with respect to pss yields the firm’s pricing function:

pss = css +
−s0 (1− δsj + δs0)
ds0
dp (1− δsj) +

dsj
dp δs0︸ ︷︷ ︸

m = markup of price over marginal cost

. (6)

The second term, m, on the right-hand side of equation (6) captures the extent to which

the firm prices above marginal cost (in equilibrium). As this markup term depends upon

choice probabilities, it is implicitly a function of price. Thus, as in the standard logit model,

we cannot derive an analytical solution for the steady-state price. Nonetheless, we derive a

condition below to see how markups are impacted by lock-in. In the usual case, m will be

declining in p, ensuring a unique equilibrium in prices.
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Are markups higher or lower in the presence of consumer lock-in? In the simple case of

no lock-in, when δ = 0 and sj = s0, equation (6) reduces to the solution to the static model

pss = css − s0
ds0/dp

. Denoting the markup term with lock-in as ml and the markup term

without lock-in as mn, let us compare these two terms at the solution to the static model:

ml = − s0 (1− δsj + δs0)
ds0
dp (1− δsj) +

dsj
dp δs0

R − s0
ds0/dp

= mn.

For a given price, the terms s0 and ds0/dp are comparable across the two models. Rear-

ranging terms, we obtain a simple condition relating the levels of the markup terms:

ml > mn ⇐⇒ −∂s0
∂p

> −∂sj
∂p

. (7)

As the term m is declining in p (and the LHS of the pricing function is increasing in p),

a higher value for ml implies higher prices, and therefore higher markups. Thus, if locked-

in consumers quantities are relatively less sensitive to changes in price, then markups are

higher.

This is an intuitive result. However, there is a nuanced point to this analysis, arising

from the fact that there is not a direct mapping between a comparison of elasticities and

the above condition. In our model, free-agent consumers are more elastic than locked-in

customers, i.e. −∂s0∂p
1
s0
> −∂sj∂p

1
sj

. However, locked-in customers also have higher shares,

so markups may be higher or lower with consumer lock-in. Consider the logit model, where

−∂s0∂p = αs0(1− s0) and −∂sj∂p = (α+ ᾱ)sj(1− sj). Though α(1− s0) > (α+ ᾱ)(1− sj), the

locked-in share sj may be high enough relative to s0 to flip the inequality.4

Thus, when locked-in consumer are less elastic, there may be an incentive to lower

prices, relative to the static model. The intuition for this result is akin to those summarized

in Farrell and Klemperer (2007); with dynamic demand and lock-in, firms face a trade-off

between pricing aggressively today and “harvesting” locked-in consumers in future periods.

In the steady state, our model shows that either effect may dominate. In the empirical

section, we estimate (α+ ᾱ) to be −2.54 and the share of locked-in customers to be close to

one. In this case, our data support markups being higher in in the presence of lock-in.

This finding has important implications for counterfactual exercises, such as merger si-

mulation. Failing to account for customer lock-in will result in inferring markups from

incorrect first-order conditions, which is a critical input to merger simulation. Furthermore,

antitrust agencies often infer elasticities from markups calculated using accounting data

(see, Miller et al. (2013)); our result demonstrates that this will lead to incorrect elasticities

and merger price predictions when lock-in (or brand loyalty) is important.

4In the logit model, markups increase in the presence of lock-in when s0 > 0.5.
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2.3.2 Lock-In and Mergers

We now introduce competition into the model, and use numerical methods to analyze the

steady-state of a duopoly market. In doing so, we demonstrate how the magnitude of the

lock-in effect, δ, affects prices, markups, and profits. Furthermore, we analyze the impact of

a merger to monopoly and find that the percentage change in price is not monotonic in δ and

may even decrease with δ. We also analyze the consequences of ignoring the lock-in effect

when calibrating demand and performing a merger simulation, and find that assuming the

standard logit model when lock-in is present causes a systematic overestimation of the true

price effect of the merger.

Each firm is specified to sell a single product and maximize the expected discounted

value of profits. Therefore firm 1’s Bellman equation is as follows:

V1(r1, r2) = max
p1|p2

{
(p1 − c1)((1− r1 − r2)s1(0) + r1s1(1) + r2s1(2)) + β(V1(r′1, r

′
2))
}
. (8)

Here we drop the expectations operator, as the only source of uncertainty in the model is the

realizations of marginal costs, which are fixed in the steady-state. To find the steady-state

prices and locked-in shares for each firm, we focus on Markov perfect equilibrium.5 Firm

1’s profit-maximizing first-order condition is then:

dπ1
dp1

+ β(
dV ′1
dr′1

dr′1
dp1

+
dV ′1
dr′2

dr′2
dp1

) = 0. (9)

Firm 2’s first-order condition is defined analogously. Next, we specify the derivatives of

equation (8) with respect to r1 and r2 and evaluate them at the prices that solve each firm’s

first-order condition, which will be the prevailing prices at the steady-state. These two

conditions are:

dV1
dr1

=

dπ1

dr1
+ dπ1

dp2

dp2
dr1

+ β dV1

dr2
(
dr′2
dr1

+
dr′2
dp2

dp2
dr1

)

1− β(
dr′1
dr1

+
dr′1
dp2

dp2
dr1

)
(10)

dV1
dr2

=

dπ1

dr2
+ dπ1

dp2

dp2
dr2

+ β dV1

dr1
(
dr′1
dr2

+
dr′1
dp2

dp2
dr2

)

1− β(
dr′2
dr2

+
dr′2
dp2

dp2
dr2

)
. (11)

In the steady-state, dV ′
1

dr′1
= dV1

dr1
and dV ′

1

dr′2
= dV1

dr2
. Therefore, we can plug equation (11)

into equations (9) and (10) to eliminate dV1

dr2
and then equation (10) into equation (9) to

eliminate dV1

dr1
. This yields a steady-state profit-maximizing condition for firm 1 and the

analogous one can be derived for firm 2. Then, in the steady-state , r′ = r, and therefore

5Although we do not prove that the equilibrium is unique, the simulation results support there being a single
steady-state equilibrium.
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the equations that govern the evolution of locked-in consumers, r′j = δSj , can be leveraged

to yield two more equilibrium restrictions:

r1 =
s1(0) + r2(s1(2)− s1(0))

1
δ + s1(0)− s1(1)

(12)

r2 =
s2(0) + r1(s2(1)− s2(0))

1
δ + s2(0)− s2(2)

. (13)

Equations (12) and (13) in conjunction with the steady-state profit-maximization conditions

yield four restrictions that facilitate solving for the equilibrium prices and locked-in shares.

However, there are four additional unknowns embedded in the envelope conditions: dpj
drk

for

j, k ∈ {1, 2}. These values are determined by the model, and we solve for them numerically

using a local approximation method. For details, see the Appendix.

Finally, to produce results we must parameterize the demand model and specify values

for marginal costs. The demand system is parameterized as follows:

Table 1: Duopoly Numerical Parameters

Variable Name Value
δ Lock-in Probability {0.05, 0.1, ..., 0.95}
α Price Coefficient {4, 4.1, ..., 7}
ᾱ Price Lock-in Effect -2.762

ξ1, ξ2 Intercepts 15.5, 15.7
ξ̄ Intercept Lock-in Effect 2.218

c1, c2 Marginal Costs 2.2, 2.2
β Discount Factor 0.96

Figure 1 plots the steady-state pre and post-merger prices for product 1.6 To simulate

the merger, we assume all demand parameters and marginal costs remain the same and

only the ownership structure changes. Prices are depicted for values of δ ranging from 0.05

to 0.95 and α = 5.6. We find that prices rise as the lock-in effect becomes stronger, both

in the pre-merger duopoly and post-merger monopoly settings. Thus, in the steady-state,

the “harvesting” effect dominates the incentive to invest in future demand. The pre-merger

price for δ = 0.95 is higher than the post-merger price for δ = 0.05, indicating that lock-in

may have a greater impact on price than reduced competition.

Table 2 summarizes the numerical results. Again, steady-state prices and margins appear

to monotonically increase with the probability of consumers becoming locked-in. While this

is an intuitive result in the case of a monopoly,7 it also demonstrates that intense competition

for future locked-in consumers does not dominate the incentive to increase prices to a loyal

6The prices for both products are approximately equal.
7However, Dube et al. (2009) demonstrates numerically that lock-in may lead to lower equilibrium prices, and

indeed does so in its empirical application.
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Table 2: Duopoly Lock-in Prices and Margins

Lock-in Probability (δ) 0.1 0.25 0.5 0.75 0.9

Pre-Merger Price
α = 4 2.70 2.75 2.89 3.17 3.46
α = 5 2.59 2.62 2.71 2.84 2.98
α = 6 2.47 2.49 2.53 2.59 2.67
α = 7 2.37 2.37 2.39 2.42 2.48

Post-Merger Price
α = 4 3.68 3.72 3.80 3.95 4.16
α = 5 3.03 3.05 3.12 3.23 3.39
α = 6 2.63 2.65 2.69 2.78 2.90
α = 7 2.40 2.41 2.44 2.49 2.58

%∆ Price from Merger
α = 4 36.1 34.9 31.7 24.9 20.1
α = 5 17.0 16.5 15.2 13.6 13.8
α = 6 6.3 6.3 6.5 7.1 8.6
α = 7 1.7 1.8 2.1 2.9 4.0

Pre-Merger Margin
α = 4 0.19 0.21 0.24 0.31 0.37
α = 5 0.16 0.17 0.19 0.23 0.27
α = 6 0.12 0.12 0.14 0.16 0.18
α = 7 0.08 0.08 0.09 0.10 0.12

Post-Merger Margin
α = 4 0.41 0.41 0.43 0.45 0.48
α = 5 0.28 0.29 0.30 0.33 0.36
α = 6 0.17 0.18 0.19 0.21 0.25
α = 7 0.09 0.10 0.11 0.13 0.16

Notes: Statistics are for product 1. α is the price coefficient for free-agent
customers. The price coefficient for locked-in customers is α+ ᾱ.
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Figure 1: Duopoly Steady-State Prices
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customer base. Also, prices and margins in Table 2 decrease as consumers become more

price sensitive.

Interestingly, the the percentage price increase from a merger is not monotonic in the

probability of consumers becoming locked-in. When consumers are less elastic (α = 4 or

5) the percentage price effects are generally large, ranging from 14 percent to 36 percent.

At these values of α, however, the percent price change from the merger decreases with

a stronger lock-in effect. On the other hand, when consumers are relatively more price

sensitive, merger price effects increase with the lock-in effect. The reason for these results

is, in part, due to the relative value of competing for versus harvesting locked-in consumers.

When α is lower, holding ᾱ constant, then locked-in consumers are less likely to choose

the competing firm. Consequently, harvesting locked-in consumers is more valuable for a

duopolist at lower levels of α. In turn, pre-merger prices and competition is less intense,

and post-merger monopolists have less consumer rent to extract (on a percentage basis). On

the other hand, when α is high, then pre-merger competition for free-agents is more intense

and harvesting is relatively less valuable. Thus, increasing δ leads to relatively modest

increases in pre-merger prices, and therefore the merger leads to greater price increases (on

a percentage basis).
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2.3.3 Model Misspecification in Merger Simulation

We now explore the implications of failing to account for consumer lock-in when calibrating

demand and simulating a merger, as is common practice by antitrust practitioners. To do

so, we consider the following hypothetical scenario. The true underlying model is the du-

opoly lock-in model. A practitioner observes both firms’ pre-merger prices, marginal costs,

and aggregate market shares (rather than separately observing its free-agent and locked-in

shares). This data is then used to recover the demand parameters of the standard logit

model (ξi and α), and then the price effects of a merger are simulated.8

Figures 2 (a) and (b) depict percent price increases from the true lock-in model (for

product 1), and the predicted price increases from the standard logit model calibrated to

match the observed pre-merger prices, marginal costs, and aggregate firm market shares. In

these figures, α is set to be 4.8 and 6.4, respectively. In both figures, the logit model over-

predicts the price increase and the bias worsens as the the lock-in effect increases. Thus,

ignoring consumer lock-in becomes increasingly problematic as the effect strengthens.

These figures illustrate potential problems in antitrust enforcement if consumer lock-in

is not accounted for in merger simulation. Antitrust agencies typically evaluate mergers ba-

sed upon whether or not a transaction will result in a “small but significant non-transitory

increase in price,” which is often taken to be 5 percent.9 In Figure 2 (b), for values of δ

between 0.4 and 0.65, the lock-in model predicts prices increases below a 5 percent SSNIP,

whereas the incorrectly specified logit model finds a price change above the threshold. In

Figure 2 (a), the price predictions of the two models diverge and become increasingly dis-

parate as δ increases. While the price increases are above a SSNIP in both models, different

demand parameters could result in similar price paths centered at a lower price increase,

say 5%. Thus, depending on the underlying demand parameters, it could be that the lock-in

and standard logit models lead to different enforcement decisions across nearly the entire

range of δ.

Table 3 provides simulation results for a broader range of parameters and confirms the

patterns depicted in Figures 2 (a) and (b). The logit model calibrated to match pre-merger

lock-in observables always over-predicts the true price effects. The magnitude of the bias

(in terms of percentage points) increases with the lock-in effect and decreases with the free-

agent price coefficient (α). To calibrate the logit model, the price coefficient is inferred from

observed margins. The table demonstrates the logit coefficient is almost always calibrated

to be more elastic than the share-weighted lock-in price coefficient (columns 4 and 3, re-

spectively). Also, while not depicted in the table, the mean utility in the logit model is also

calibrated to be lower when compared to the share-weighted counterparts in the lock-in

8See Miller et al. (2016) for details on the calibration and simulation procedure for the logit model.
9See the 2010 Horizontal Merger Guidelines issued jointly by the Federal Trade Commission and the US De-

partment of Justice.

13



Figure 2: Simulated Merger Price Increases
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Table 3: Duopoly Merger Simulation: Lock-in vs. Logit

δ Free-Agent α Lock-in Avg. α Logit α Pre p1 Lock-in ∆p1 Logit ∆p1 Bias
0.10 4 3.72 3.79 2.70 36.1 38.3 2.2
0.25 4 3.31 3.45 2.75 35.0 41.0 6.1
0.50 4 2.62 2.80 2.89 31.7 46.9 15.2
0.75 4 1.93 2.01 3.17 24.9 54.2 29.3
0.90 4 1.51 1.54 3.46 20.1 162.6 142.6
0.10 5 4.73 4.76 2.59 17.0 18.0 1.0
0.25 5 4.31 4.37 2.62 16.5 19.3 2.9
0.50 5 3.62 3.67 2.71 15.2 22.2 7.0
0.75 5 2.93 2.91 2.84 13.6 26.7 13.1
0.90 5 2.51 2.44 2.98 13.8 33.0 19.1
0.10 6 5.72 5.82 2.47 6.3 6.6 0.3
0.25 6 5.31 5.53 2.49 6.3 7.7 0.9
0.50 6 4.62 5.00 2.53 6.5 8.6 2.1
0.75 6 3.93 4.37 2.59 7.1 11.3 4.2
0.90 6 3.51 3.81 2.67 8.6 15.5 6.9
0.10 7 6.72 6.94 2.37 1.7 1.7 0.0
0.25 7 6.31 6.83 2.37 1.8 1.9 0.1
0.50 7 5.62 6.57 2.39 2.1 2.5 0.3
0.75 7 4.93 6.09 2.42 2.9 3.7 0.8
0.90 7 4.52 5.35 2.48 4.0 5.7 1.8

Notes: Statistics are for product 1. α is the price coefficient for free-agent customers in the lock-in model.
The price coefficient for locked-in customers is α + ᾱ, where ᾱ = −2.762. Lock-in Avg. α is the average
price coefficient in the market, where the average is weighted by the shares of free-agent and locked-in
consumers. Logit α is the calibrated price coefficient for the standard logit model. Bias is post-merger
price prediction error measured in percentage points.

model. This occurs because, conditional on the observed margins, the logit model interprets

the incentive to invest in future demand, which puts downward pressure on margins, as

more elastic demand.

Yet, prices are always predicted to rise by more in the logit model. Biased predictions

of the logit model are likely to arise from ignoring the dynamic incentive to invest in future

demand, rather than a biased elasticity or mean utility parameters alone. In the static logit

model, there is no incentive for the post-merger monopolist to invest in future demand,

and therefore it sets its post-merger price simply to balance current marginal revenue and

marginal cost. On the other hand, in the dynamic lock-in model, there is still an incen-

tive for the monopolist to invest in future demand, which imposes downward pressure on

post-merger prices. Thus, starting from the same pre-merger prices the logit model leads

to greater post-merger price effects, even when its demand parameters are biased toward

greater elasticity and lower mean utility.
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3 Reduced-Form Evidence of Dynamics

To motivate the structural model, we first provide evidence on dynamically adjusting retail

gasoline prices and dynamic demand. A host of previous studies have found that retail

gasoline prices may take multiple weeks to fully incorporate a change in marginal cost.10

One innovation of our study is that we use separate measures of unexpected and expected

costs to see if, consistent with forward-looking behavior, firms respond differentially to these

two types of costs.

3.1 Data

The analysis relies upon daily, regular fuel retail prices for nearly every gas station in the

states of Kentucky and Virginia, which totals almost six thousand stations. As a measure

of marginal cost, the data include the brand-specific, daily wholesale rack price charged

to each retailer. We therefore almost perfectly observe each gas station’s marginal cost

changes, except for privately negotiated discounts per-gallon, which are likely fixed over

the course of a year.11 The data ranges from September 25th, 2013 through September

30th, 2015. The data was obtained directly from the Oil Price Information Service (OPIS),

which routinely supplies data used in academic studies (e.g. Lewis and Noel 2011; Chandra

and Tappata 2011; Remer 2015).

OPIS also supplied the market share data, which it obtains directly from “actual purcha-

ses that fleet drivers charge to their Wright Express Universal card.” The data is specified

at the weekly, county/gasoline-brand level.12 Due to contractual limitations, OPIS only pro-

vided each brand’s share of sales, not the actual volume. Thus, to account for temporal

changes in market-level demand, we supplement the share data with monthly, state-level

consumption data from the Energy Information Administration (EIA).

3.2 Identifying Expected and Unexpected Costs

To disentangle the reaction to anticipated and unanticipated cost changes, we leverage data

on wholesale gasoline futures traded on the New York Mercantile Stock Exchange (NYMEX).

The presence of a futures market allows us to project expectations of future wholesale costs

for the firms in our market.

To make these projections, we assume that firms are engaging in regression-like predicti-

ons of future wholesale costs, and we choose the 30-day ahead cost as our benchmark.13

10See Eckert (2013) for a comprehensive review of the literature.
11The data also include all federal, state, and local taxes.
12In some instances, the brand of gasoline may differ from the brand of the station. For example, some 7-Eleven

stations in the data are identified as selling Exxon branded gasoline.
13Futures are specified in terms of first-of-the-month delivery dates. To convert these to 30-day ahead prices, we

use the average between the two futures, weighted by the relative number of days to the delivery date.
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Using station-specific wholesale costs, we regress the 30-day lead wholesale cost on the cur-

rent wholesale cost and the 30-day ahead future. In particular, we estimate the following

equation.

cit+30 = α1cit + α2F
30
t + γi + εit (14)

Here, cit+30 is the 30-day-ahead wholesale cost for firm i, F 30
t is the 30-day ahead forward

contract price at date t, and γi is a station fixed effect. We use the estimated parameters

to construct expected 30-day ahead costs for all firms: ĉit+30 = α̂1cit + α̂2F
30
t + γ̂i. The

unexpected cost, or cost shock, is the residual: c̃it+30 = cit+30 − ĉit+30.

For robustness, we construct a number of alternative estimates of expected costs, inclu-

ding a specification that makes use of all four available futures. However, we found that

these alternative specifications were subject to overfit; the estimates performed substanti-

ally worse out-of-sample when we ran the regression on a subset of the data. Our chosen

specification is remarkably stable, with a mean absolute difference of one percent when we

use only the first half of the panel to estimate the model. Expected costs constitute 74.6

percent of the variation in costs (R2) in our two-year sample, which includes a large decline

in wholesale costs due to several supply shocks in 2014.

3.2.1 Note on the 30-Day Ahead Expectation

One of the challenges in discussing expectations is that they change each day with new

information. News about a cost shock 30 days from now may arrive anytime within the

next 30 days, if it has not arrived already. Therefore, any discussion of an “unexpected”

cost shock must always be qualified with an “as of when.” Given previous findings in the

gasoline literature indicating that prices take approximately four weeks to adjust, a 30-

day ahead window seems an appropriate one to capture most of any anticipatory pricing

behavior. Additionally, our findings support this window as being reasonable in this context.

We see no relationship between unexpected costs or expected costs and the price 30 days

prior. We do find a small anticipatory effect of our measure of unexpected costs on price 14

days in advance, but is less than 5 percent of the total price adjustment. We interpret this

correlation to arise from the underlying correlation in unobserved cost shocks.

3.3 Dynamic Pricing: Pass-through Regressions

Further highlighting the temporal component of cost pass-though, we separately estimate

how gas stations react to expected versus unexpected cost changes. Beyond motivating the

structural model, these results also demonstrate the importance of capturing firms’ antici-

pated price responses when estimating cost pass-through rates. For example, to analyze

how much of a tax increase firms will pass-on to consumers, it is imperative to recognize

17



that firms may begin to adjust their prices prior to the tax increase being enacted; failure to

account for this response may lead to underestimating pass-through rates.

We employ our measures of expected and unexpected costs to study how firms differen-

tially respond to these costs. We incorporate the main components of marginal costs for

retail gasoline, which include the wholesale cost of gasoline and the per-unit sales tax. We

estimate the following model:

pit =

50∑
s=−50

βsĉit−s +

50∑
s=−50

γsc̃it−s +

50∑
s=−50

φsτit−s + ψi + εit. (15)

Here, pit, is the price observed at gas station i at time t. ĉit−s and c̃it−s are the expected and

unexpected wholesale costs observed with lag s, and τit−s is the state-level sales tax.14 Using

the estimated coefficients on the cost measures, we construct cumulative response functions

to track the path of price adjustment to a one time, one unit cost change at time t = 0. We

incorporate 50 leads and lags to capture the full range of the dynamic response. We focus

our results on unexpected and expected costs, as we do not have enough tax changes in our

data to estimate a consistent pattern of response.15

Figure 3 plots the cumulative response functions for unexpected and expected costs.

Panel (a) displays the results for unexpected costs. Prices react suddenly and quickly at

time zero, but it takes about four weeks for the prices to reach the new long-run equilibrium,

reaching a peak of 0.71 after 34 days.

Panel (b) displays the cumulative response function for expected costs. Notably, firms

begin to react to expected costs approximately 28 days in advance, with a relatively con-

stant adjustment rate until the new long-run equilibrium is reached 21 days after the shock.

Though the total duration of adjustment is longer compared to the unexpected cost shock,

the firm incorporates the cost more quickly after it is realized. This coincides with substan-

tial anticipation by the firm; the price already captures about a third of the effect of the

expected cost shock the day before it arrives.

A striking result from these estimates is the difference in the long-run pass-through rates.

Expected costs experience approximately “full” pass-through - a cost increase leads to a

corresponding price increase of equal magnitude. On the other hand, unexpected costs

demonstrate incomplete pass-through, moving about only 66 cents for each dollar increase

in cost.

The different response to unexpected and expected costs emphasizes the need for em-

pirical researchers to think carefully about designing proper estimators for pass-through.

14To more easily incorporate future anticipated costs into the regression, we do not estimate an error-correction
model (Engle and Granger, 1987), which is commonly used to estimate pass-through in the retail gasoline litera-
ture.

15As a robustness check, we also estimated the price response to expected and unexpected costs using the error-
correction model, and we found nearly identical results.
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Figure 3: Cumulative Pass-through
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If costs are anticipated, then a pass-through measure that omits leads will only capture a

portion of the overall response. Additionally, if a pass-through estimate is to be used for

evaluation, is it important to ensure that the estimator relies on a mix of unexpected and

expected shocks that translate to the policy under analysis. In our setting, for example,

an analysis that used an unexpected cost shock to predict the impact of a tax rate change

would be inappropriate, as the tax change is anticipated and leads to a much greater price

response.

An important consideration for pass-through when analyzing imperfect competition is

the distinction between idiosyncratic costs and common costs. In the current section, we

consider only the simple cut between unexpected and expected costs to focus attention on

this previously unexplored dimension of pass-through. In Appendix B, we present results

for common costs and idiosyncratic costs. In our setting, costs are highly correlated, with

common costs tending to dominate idiosyncratic costs at moderate frequencies. Therefore,

the results for common costs are very similar to those in this section. One distinction,

however, is that pass-through of unexpected common costs is higher than the pass-through

for total unexpected costs. For idiosyncratic costs, which we consider by controlling for the

prices of rivals, pass-through is on the order of 0.04 to 0.06. This is not surprising for a

highly competitive market such as retail gasoline.

3.4 Heterogeneity

We now show that there is significant heterogeneity across firms in the dynamics of cost

pass-through, and that it can, in part, be explained by the firm’s competitive environment.

To do so, we estimate station-specific regressions of equation (15), and then construct a

cumulative response function for expected and unexpected costs separately for each gas

station. To summarize these response functions, we use non-linear least squares to fit a

three-segment spline to each firm’s cumulative response function. We restrict the slopes of

the first and last segments to equal zero. The middle segment captures the duration and

magnitude of the price adjustment. This methodology allows to to estimate for each gas

station (i) anticipation: how far in advance the firm begins responding to a cost shock, (ii)

duration: how many days it takes to reach the new long-run equilibrium, and (iii) rate:

what proportion of the cost change is passed through to price each day. We also construct

the long-run pass-through rate (“LR_PTR”), which reflects the degree to which prices reflect

costs at the end of the adjustment period.

Table 4 summarizes the estimated heterogeneity parameters. The five rows correspond

to the response to unexpected costs, and the last five rows correspond to expected costs.

These summary statistics align with the mean pass-through parameters estimated in the

previous section. The median firm anticipate expected costs much earlier (25.4 days in

advance) than unexpected costs (4.1 days in advance), and full pass-through is greater
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Table 4: Pass-through Heterogeneity

Parameter p10 p25 p50 p75 p90
Anticipation -24.5 -15.0 -4.1 -0.1 3.6
Rate 0.009 0.016 0.026 0.045 0.103
Duration 5.0 12.3 26.9 47.0 59.4
Finish 4.0 10.7 21.5 32.6 41.6
LR_PTR 0.278 0.458 0.657 0.862 1.146

Anticipation_Exp -39.0 -33.0 -25.4 -14.0 -4.0
Rate_Exp 0.015 0.017 0.021 0.029 0.051
Duration_Exp 19.2 33.2 48.5 60.0 70.7
Finish_Exp 10.2 15.8 23.0 30.0 38.0
LR_PTR_Exp 0.860 0.940 1.015 1.100 1.209

for expected costs (1.02) than unexpected costs (0.66). The median firm takes longer to

incorporate expected costs, but tends to reach full pass-through around the same time for

both types of shocks (21.5 versus 23.0 days after the shock).

Comparing the 10-90 percentile range of the estimates, we find that there is greater

variation in the pricing response to unexpected costs. The median rate of adjustment is

faster for unexpected costs (0.026/day compared to 0.012), but sees a spread of (0.009,

0.103) for the 10-90 percentile range, compared to (0.015, 0.051). Likewise, there is greater

variation in the timing of when firms fully incorporate cost shocks in price and the full pass-

through rates (0.278 to 1.146 for unexpected, 0.860 to 1.209). The long-run pass-through

estimates for expected costs display a tendency toward homogeneity, as they are clustered

around 1.

For the specification in this section, our fitted splines consist of three parameters, where

we restrict the level of the first segment to be zero. In Appendix C, we consider another

version that adds the level of the first segment as a fourth parameter. The results are con-

sistent.

3.5 Competition and Heterogeneity Regressions

In this section, we project our estimated parameters onto a simple measure of market com-

petition. In doing so, we demonstrate that competition has an important effect on the

dynamics of cost pass-through, which further motivates the dynamic oligopoly model and

demonstrates that firm expectation play an important role in determining cost pass-through

rates. We perform a series of county-level regressions that relate the estimated parameters

in Table 4 to the Herfindahl-Hirschman index (“HHI”) in the county.

To do so, we first calculate the median firm-level parameter in each county, and regress it
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on the HHI and the number of gas stations in the the county.16 To calculate the HHI, we sum

the square of each gasoline brand’s weekly county market share. We then take the average

across all weeks for each county to use as an independent variable in the regression.17 We

also include the number of gas stations in each county as a regressor. This accounts for

variation in population and demand across counties in a simple way; without this control,

counties with a large consumer base would, all else equal, have lower HHI.

Table 5: Pass-Through and County Competition

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable LR_PTR LR_PTR_exp Rate Rate_exp Anticipation Anticipation_exp Duration Duration_exp

HHI 0.182 0.041 0.016 0.014** ‐2.592 14.058** ‐2.159 ‐16.221*

(0.138) (0.055) (0.023) (0.007) (4.051) (5.662) (7.212) (8.312)

Number of Stations 0.000 ‐0.000 0.000 0.000 ‐0.013 0.036 ‐0.002 ‐0.051

(0.001) (0.000) (0.000) (0.000) (0.017) (0.023) (0.046) (0.034)

Constant 0.629*** 1.014*** 0.034*** 0.021*** ‐5.493*** ‐28.502*** 29.190*** 53.559***

(0.044) (0.019) (0.008) (0.003) (1.415) (1.848) (2.744) (2.758)

Observations 248 248 248 248 248 248 248 248

Notes: LR_PTR is the long‐run full pass‐through rate.  "_exp" represents the reaction to an expected cost change, and other variables

are reactions to unexpected cost changes.  HHI is Herfindahl‐Hirschman index. Obsevations are at the county‐level.  The dependent variable

is the median estimated firm‐level parameter in each county. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

The results of the series of regression are presented in Table 5, and demonstrate that

competition affects pass-through dynamics. We find a significant relationship between the

HHI and reaction to expected changes in cost. Specifically, the anticipated response (“An-

ticipation_exp”), the rate of adjustment (“Rate_exp”), and duration of adjustment (“Dura-

tion_exp”) are all significantly related to the county HHI such that less competition leads to

later and quicker responses to anticipated cost changes. Interestingly, we find in this simple

regression that the long-run pass through rate (“LR_PTR”) is unaffected by competition. Ad-

ding additional controls, however, such as population or mean income leads to positive and

significant results, in some specifications. Thus, there is some evidence that less competition

also leads to a greater proportion of expected cost changes to be passed-through to consu-

mers On the other hand, we do not estimate a significant relationship between pass-through

of unexpected cost shocks and the HHI. This underscores the importance of distinguishing

between expected and unexpected cost changes when analyzing the interaction of compe-

tition and pass-through dynamics. In the following sections, we develop a structural model

to capture these reduced-form pricing dynamics

16Results are qualitatively the same when using the mean parameter value. We choose the median, as the
distribution of parameter estimates are slightly skewed and there are a few outliers.

17We take the weekly average HHI, as we observe market share rather than quantity.
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Table 6: Regressions with Share as the Dependent Variable

(1) (2) (3) (4) (5)

Price 0.011∗∗∗ 0.000∗∗ 0.004 −0.002 −0.072∗∗∗

(0.001) (0.000) (0.002) (0.004) (0.017)

Lagged Share 0.973∗∗∗ 0.963∗∗∗ 0.554∗∗∗ 0.628∗∗∗

(0.001) (0.001) (0.002) (0.003)

Price Squared −0.000 0.001 0.010∗∗∗

(0.000) (0.001) (0.003)

Comp. Price (Mean) −0.004∗∗∗ −0.006∗∗∗ −0.106∗∗

(0.001) (0.001) (0.044)

Comp. Price (SD) −0.001 −0.002 0.088∗∗∗

(0.001) (0.001) (0.024)

Comp. Stations −0.000∗∗∗ −0.000∗∗∗ −0.004∗∗∗

(0.000) (0.000) (0.000)

Num. Stations 0.000∗∗∗ 0.004∗∗∗ 0.000
(0.000) (0.000) (.)

Num. Brands −0.001∗∗∗ −0.002∗∗∗ 0.000
(0.000) (0.000) (.)

Week FEs X
County-Brand FEs X
Brand-State-Week FEs X
Week-County FEs X
County-Brand-WofY FEs X
Observations 175565 170935 170775 170756 156212
R2 0.00 0.95 0.95 0.96 0.98
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

3.6 Dynamic Demand: Correlation in Shares Over Time

Though ultimately the importance of demand-side dynamics in our data will be estimated

by the model, it is informative to examine the reduced-form relationships between key ele-

ments. The dynamic model we develop in the next section is one in which today’s quantity

depends on the quantity sold last period. As motivation for this model, we present the

results from reduced-form regressions of shares on lagged shares in Table 6.

The regressions indicate that lagged shares are a significant predictor of current shares.

In specification (2), we show that lagged shares explain 95 percent of the variance in cur-

rent shares, and the coefficient is close to one. In specification (3), we include measures

of competition in the regressions, as well as a second-order polynomial in own price. The

competition measures, which include the mean and standard deviations of competitor pri-
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ces, are correlated with shares, but lagged shares still are the most important predictor of

current shares. In specification (4), we include time and brand-county fixed effects. In

the final specification, we include rich multi-level fixed effects: by county-brand-(week of

year), brand-state-week, and week-county. The coefficient of 0.628 on lagged shares in this

specification indicates that deviations in shares are highly correlated over time, even when

we condition on the most salient variables that would appear in a static analysis, adjust for

brand-county specific seasonal patterns, and allow for flexible brand-state and county time

trends. This finding is consistent with demand-side dynamics, as there are patterns in shares

over time that are challenging to explain with contemporaneous variables.18

4 Empirical Application: Demand Estimation

We now present the empirical application of our model to the retail gasoline markets des-

cribed in the previous section. First, we outline our estimation methodology. We divide it in

two stages, as demand can be estimated independently of the supply-side assumptions. Our

method of demand estimation relies on data that is widely used in static demand estima-

tion: shares, prices, and an instrument. After outlining our methodology, we present results

for demand estimation. In Section 5, we use our estimated demand system to analyze the

dynamic incentives faced by suppliers. We use these results to consider a merger between

two brands.

4.1 Demand Estimation Methodology

Given our dynamic extension of the logit demand system, we obtain the familiar expression

for the log ratio of shares from Equation (2):

ln sjt(0)− ln s0t(0) = ξjt (16)

Likewise, we obtain the following relation for the shares of locked-in customers:

ln sjt(i)− ln s0t(i) = ξjt + 1[j = i]ξ̄it (17)

We can combine Equations (16) and (17) to obtain the following:

ln sjt(i)− ln s0t(i)− (ln sjt(0)− ln s0t(0)) = 1[j = i]ξ̄it (18)

When we specify ξ̄it = ξ̄ − ᾱpit, then this empirical relationship depends only on the

dynamic parameters ξ̄ and ᾱ along with the observed prices.

18We have also estimated specifications that add lagged prices. Though the first lag is significant, there is almost
no effect on the lagged share coefficient.
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4.1.1 Separating Locked-In Shares from Observed Shares

The challenge in dynamic demand estimation is that we do not separately observe the non-

locked-in and free-agent customers. Instead, we observe the aggregate share, Sjt, which is

a weighted combination of the {sjt(i)} and depends on the number of locked-in customers

for each product {rjt}. Observed shares are determined by the following:

Sjt = (1−
∑
k

rkt) · sjt(0) +
∑
i

rit · sjt(i).

To separate out sjt(i) from Sjt, we leverage the structure of our model. First, we note

that rjt is proportional to the observed shares in the previous period: rjt = δSjt−1. Second,

we use the relations in the previous section to obtain the following expressions:

sjt(0) =

(
s0t(0)

s0t(j)
− 1

)
1

exp(ξ̄jt)− 1

sjt(i) = s0t(i)
sjt(0)

s0t(0)
· exp

(
1[j = i]ξ̄it

)
That is, the J + J2 unknowns {sjt(i)}, can be expressed in terms of the J + 1 unknowns

{s0t(j)} and s0t(0).

The observed share equation gives us J restrictions:

Sjt = (1−
∑
k

rkt) ·
(
s0t(0)

s0t(j)
− 1

)
1

exp(ξ̄jt)− 1

+
sjt(0)

s0t(0)
·
∑
i

rit · s0t(i) exp
(
1[j = i]ξ̄it

)
And the final restriction, 1−

∑
k sjt(0)− s0t(0) = 0 identifies the shares {sjt(i)}, condi-

tional on the dynamic parameters.

4.1.2 Computational Simplicity

We can further reduce the burden of solving for the J+1 parameters {s0t(j)}in each market

by transforming the restrictions into a quadratic function of two parameters in each market.

Using the fact that

∑
k

rkt · s0t(k) exp
(
1[j = k]ξ̄kt

)
=
∑
k

rkts0t(k) +
(
exp(ξ̄jt)− 1

)
rjts0t(j)

We can write
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0 =
[
exp(ξ̄jt)− 1

] rjt
s0t(0)

s0t(j)
2

+ s0t(j)

[exp(ξ̄jt)− 1
]

(Sjt − rjt) +
1

s0t(0)

∑
0,k

rkts0t(k)


−
∑
0,k

rkts0t(k)

and solve for {s0t(t)} as a quadratic function of observable variables and the two para-

meters s0t(0) and
∑

0,k rkts0t(k).

4.1.3 Identification of the Dynamic Parameters

As we have shown above how to decompose shares for any values of the dynamic para-

meters, we need additional restrictions to identify the dynamic parameters. In order to

do so, we assume that any idiosyncratic product-time shocks, after allowing for a period-

specific fixed effect, are uncorrelated over time. These shocks may contain real demand

shocks or measurement error from our data. That is, we assume ηjt = φt + κjt, and

Cov(κjt, κj(t+1)) = 0.

4.1.4 Implementation

To implement our estimator, we use a nested regression approach with the following steps:

1. First, pick values for δ, ξ̄, and ᾱ.

2. Calculate rjt = δSjt−1 for all periods except the first.

3. In each market, solve for s0t(0) and
∑

0,k rkts0t(k) using the non-linear system of

equations obtained previously. Find sjt(0) for each firm.

4. Run the regression implied by equation (16) using the {sjt(0)} obtained in the previ-

ous step. Calculate the correlation of the residuals Cor(κ̂jt, κ̂j(t+1)).

5. Repeat 1-5 to find the dynamic parameters that set the correlation to zero.

The regression for Equation (16) may involve instrumental variables and the use of panel

data methods such as fixed effects. In our empirical application, we make use of both.

The estimation methodology employs two tricks to speed up the computation of the

dynamic model. First, the explicit formula for {sjt(0)} means that the non-linear solver

only has to find two parameters, s0t(0) and
∑

0,k rkts0t(k), for each market-period. The

quadratic form for the remaining unknowns results in fast calculation. Second, the linear

form for the nested regression allows for a quick calculation of the inner part of the routine.
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4.2 Data for Structural Model

We supplement our EIA-adjusted weekly brand-county share measures with the average

prices for the brand in a week-county. To reduce the occurrence of zero shares, which do

not arise in the logit model, we use a simple linear interpolation for gaps up to four weeks.

For any gap greater than four weeks, we assume the station was not in the choice set for

that gap. We drop any observations that have missing prices, missing shares, or missing

shares in the previous week. This includes dropping the first week of data, for which we do

not have previous shares.

To reduce the sensitivity of our analysis to brands with small shares and to make the

counterfactual exercises more computationally tractable, we aggregate brands with small

shares in our data into a synthetic "fringe" brand. We designate a brand as part of the

fringe if it does not appear in ten or more of our 252 counties. Additionally, if a brand does

not make up more than 2 percent of the average shares within a county, or 10 percent of

the shares for the periods in which it is present, we also designate the brand as a fringe

participant for that county. These steps reduce the number of observations from 194,275

down to 112,417. Additionally, this reduces the maximum number of brands we observe in

a county to 8, down from 24.

Table 7: Summary of Brands

Brand Cond. Share Share Num. Markets Num. Stations Margins
1 Marathon 0.18 0.10 135 5.20 0.21
2 Sheetz 0.18 0.03 37 1.70 0.17
3 Speedway 0.17 0.03 39 3.70 0.18
4 Wawa 0.16 0.01 22 3.20 0.12
5 Exxon 0.16 0.07 119 4.60 0.25
6 Hucks 0.15 0.01 11 1.80 0.15
7 7-Eleven 0.15 0.02 42 6.70 0.18
8 FRINGE 0.14 0.12 244 9.90 0.19
9 Shell 0.13 0.09 165 4.20 0.22

10 Pilot 0.12 0.01 21 1.40 0.13
11 BP 0.12 0.06 127 3.30 0.21
12 Loves 0.11 0.01 15 1.00 0.19
13 Valero 0.11 0.02 59 3.50 0.21
14 Thorntons 0.11 0.00 9 5.90 0.14
15 Sunoco 0.10 0.01 35 4.30 0.29
16 Citgo 0.08 0.01 35 3.90 0.24

The resulting brands are displayed in Table 7. We reduce the number of brands for

the analysis to 16. The FRINGE brand is, on average, 14 percent of the shares for the

markets that it appears in. As we designate a fringe participant in nearly every market, the

aggregated fringe has the highest overall share (12 percent).
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Table 8: Summary Statistics by County

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max N

Num. Brands 4.42 1.51 1 3 5 8 252
Price 2.87 0.11 2.69 2.77 2.95 3.14 252
Wholesale Price 2.25 0.05 2.12 2.21 2.28 2.44 252
Margin 0.21 0.06 0.06 0.17 0.24 0.44 252
Num. Stations 22.65 28.52 1.12 7.00 25.48 243.47 252

Table 8 provides summary statistics of the data for our 252 counties. There is variation

in the number of brands we observe in each county, ranging from 1 to 8. There is cross-

sectional variation in wholesale prices, margins, and the number of stations in each county.

Table 9: Retail Gasoline in Kentucky and Virginia: Oct 2013 - Sep 2015

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max N

Share 0.141 0.110 0.0003 0.060 0.187 0.688 112,930
Price 2.870 0.529 1.715 2.383 3.310 4.085 112,930
Wholesale Price 2.256 0.527 1.245 1.754 2.673 3.545 112,930
Wholesale FE 2.260 0.031 2.205 2.229 2.291 2.365 112,930
Margin 0.205 0.115 −0.440 0.131 0.273 1.048 112,930
Num. Stations 5.256 7.165 1 2 6 83 112,930
Food 1.543 0.817 0.000 1.000 2.000 4.000 112,633
Supermarket 0.019 0.093 0.000 0.000 0.000 1.000 112,633
Car Service 0.160 0.297 0.000 0.000 0.214 2.000 112,633
Interstate 0.004 0.049 0.000 0.000 0.000 1.000 112,633

Finally, we provide summary statistics for the observation-level data in our analysis in

Table 9. The greatest number of stations a brand has in a single county in our data is 83. The

25 percentile is 2, and we have several observations of a brand with only a single station in

our market. The variable Wholesale FE is the average wholesale price for a brand within a

county. We interact this variable with the U.S. oil production data to generate an instrument

for price in the demand estimation.

We also take steps to reduce measurement error in the number of stations in our data.

We assume that stations exist for any gaps in our station-specific data lasting less than 12

weeks. Likewise, we trim for entry and exit by looking for 8 consecutive weeks (or more) of

no data at the beginning or end of our sample.
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4.3 Results: Demand Estimation

For the empirical application, we implement the methodology described in Section (4.1).

Conditional on dynamic parameters, we extract the unobserved shares for all free-agent

type customers. We then estimate demand using the typical logit demand regression. Our

chosen dynamic parameters minimize the

Our regression equation takes the following form:

ln(sjmt(0)/s0mt(0)) = ξjM − αpjmt + γNjmt +Xjmtβ + ηjmt

Here, we have added the subscript m to denote the market (county) and M to denote

the larger region (state). We have shares and prices at the brand-county-week level. We

model a within county share as depending on the number of stations for the brand in that

market, Njmt, after accounting for a brand-state fixed effect, ξjM . We allow for endogeneity

in pricing behavior by instrumenting for pimt with predicted deviations in wholesale costs,

where the predictions are obtained from a regression of deviations of wholesale costs (from

the brand-state average) on the interaction of US production of crude oil (obtained from

EIA) with the average wholesale cost for the brand in the state.19 This gives us brand-state-

specific time variation in our instrument, and it is plausibly tied to variation in the wholesale

cost and not linked to demand. We chose this measure, rather than instrumenting directly

with brand-state wholesale costs, to account for the possibility that wholesalers respond to

local, brand-specific demand shocks.

19Our measure of the average brand-state wholesale cost is the fixed effect obtained by a regression of wholesale
costs on brand state and weekly fixed effects, thereby accounting for compositional differences in brand-states
across time.
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Figure 4: Shares and Prices

(a) Total Market Shares and Prices
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Table 10: Demand Regressions

Static Model Dynamic Model

(1) (2) (3) (4)

Price −0.009 −0.234∗∗∗ −2.536∗∗∗ −3.019∗∗∗

(0.013) (0.015) (0.318) (0.505)

Number of Stations 0.019∗∗∗ 0.019∗∗∗ 0.072∗∗∗ 0.081∗∗∗

(0.004) (0.004) (0.011) (0.013)

Food 0.134∗∗∗ 0.128∗∗∗ 0.137∗∗∗ 0.163∗∗∗

(0.022) (0.022) (0.031) (0.040)

Supermarket −0.013 −0.013 0.020 0.026
(0.021) (0.020) (0.025) (0.031)

Car Service 0.002 −0.000 0.006 0.003
(0.024) (0.024) (0.025) (0.032)

Interstate 0.026 0.026 0.037∗∗∗ 0.046∗∗∗

(0.017) (0.017) (0.014) (0.016)

Dynamic Parameters

δ 0.762
(0.007)

ξ̄ 2.180
(0.061)

ᾱ 2.537
(0.056)

IV No Yes Yes Yes
Demographic Controls X X X X
Week FEs X X
County-(Week of Year) FEs X X
Brand-State FEs X X
Observations 112,417 112,417 112,417 112,417
R2 0.066 0.045 0.441 0.199

Notes: Significance levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent. The table displays the
estimated coefficients for a logit demand system, where the dependent variable is the log
ratio of the share of the brand to the share of the outside good. For the first three models, the
dependent variable uses observed, aggregate shares. For the fourth model, the dependent
variable uses the shares of free agent customers, which are calculated based on the estimated
dynamic parameters. Standard errors are clustered at the county level. Standard errors for
the dynamic parameters (are preliminary and) are calculated via the bootstrap.31



In addition to the instrument, we employ panel data methods to address other unob-

servables. We allow for the fact that ηjmt may be correlated over time. We let ηjmt =

φt + ψmw(t) + κjmt, and estimate weekly fixed effects, {φt}, along with county-specific

(weekly) seasonal demand shocks, {ψmw(t)}. We also estimate brand-state specific fixed

effects, {ξjM}. Once we incorporate these fixed effects, the exclusion restriction for a valid

use of our instrument is that the brand-market-period specific shock κjmt is uncorrelated

with the instrument, after accounting for aggregate period-specific shocks and brand-state

level differences.20

The estimates are reported in Table 10. The first three columns report coefficient esti-

mates using the observed shares in logit demand estimation. The fourth column reports the

results from our dynamic model, along with the dynamic parameters. In addition to brand

amenities, we also control for the following demographic characteristics: median household

income, population, commute percent, and population density. Each of these variables are

weighted by the number of stations in each census tract within a county. Thus, entry and

exit by a brand give us variation in these characteristics over time.

We estimate that 76 percent of customers become locked-in week-over-week after pur-

chasing from a particular station. These customers have low price sensitivity, as the net

price sensitivity ᾱ + α of approximately -0.5 is quite small. The price coefficient, -3.02, is

greater than that of the static model (-2.54).

Table 11: Implied Elasticities from Dynamic Model

Group Mean Pctl(25) Median Pctl(75)

Free Agent −8.099 −9.447 −8.246 −6.692
Locked-In −0.028 −0.009 −0.002 −0.001
Weighted −1.975 −2.501 −1.842 −1.263
Naive (Static) −6.251 −7.444 −6.238 −5.156

To interpet the price coefficients, we summarize the implied elasticities in Table 11.

The locked-in customers of our model are very inelastic, with a near-zero response to price

effects. The free agents, however, are highly elastic, with an average own-price elasticity of

-8.1. This is large in magnitude, and it implies that for a 1 percent increase in price (roughly

3 cents), the station will lose 8.1 percent of the free-agent customers. This high level of price

sensitivity for a subset of retail gasoline customers seems plausible, as, anecdotally, some

“shoppers” are known to go well out of the way to save a few cents per gallon.

The average weighted elasticity, which weighs free-agent and locked-in customers by

their relative (purchasing) proportions, is -2.0. This weighted elasticity is starkly different

than the elasticity one obtains by estimating the static model. A "naive" estimate (supposing
20An alternative interpretation of our decomposition is that we attribute all of the brand-specific correlation in

demand over time within a market to unobservable demand types arising from consumer loyalty.
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the true model were dynamic) of this elasticity would obtain a value of -6.3, which implies

a much greater loss in market share for a given price increase than we obtain from the

dynamic model. Indeed, the static model obtains an elasticity more in line with the free-

agent elasticity than the overall elasticity from the dynamic model.

Additionally, we find that variables we would expect to increase demand, including the

number of stations a brand has in a market and the availability of amenities such as food, a

supermarket, or proximity to an interstate, are positively correlated with utility.

Table 12: Shares of Locked-In and Free-Agent Customers

Statistic Mean St. Dev. Min Pctl(25) Pctl(75) Max

Observed Share (Sjmt) 0.141 0.110 0.000 0.061 0.187 0.688
Free-Agent Share (sjmt(0)) 0.065 0.063 0.000 0.022 0.089 0.686
Locked-In Share (sjmt(j)) 0.979 0.073 0.039 0.992 1.000 1.000
rjmt 0.107 0.084 0.000 0.046 0.142 0.524
Portion from Free Agents 0.244 0.141 0.000 0.166 0.309 1.000
Portion from Locked-In 0.753 0.145 0.000 0.689 0.833 1.000

For ease of interpretation of the dynamic parameters, we present summary statistics

and graphs of the resulting shares. Table 12 displays the means and standard deviations

for observed shares and the two components of the shares we identify. We also report the

portion of the observed share that a firm realizes from the locked-in customers, which is

75 percent on average. Firms (brands) retain nearly all of their locked-in customers (98

percent), and capture 6.5 percent of the free-agent customers on average.

In Figure 5, we display the time series of the average price and the average shares.

The shares for the customers that are not locked-in, displayed in Panel (a), are negatively

correlated with the price.21 Intuitively, customers shift to the outside option when prices are

higher. On the other hand, the share of locked-in customers, displayed in Panel (b), track the

prices more closely. This occurs because prices respond positively to demand shocks, as do

the locked-in customers, who we find to be price inelastic. Figure 6 displays the elasticities

over time for each type of customer. The weighted elasticity, displayed in Panel (b), as well

as the free-agent elasticity, are negatively correlated with prices. The locked-in elasticity is

relatively constant.

Figure 7 presents the average portion of customers for each firm that are coming from

the locked-in set of customers. In Panel (b), we compare the portions for large brands and

fringe brands (defined as both the synthetic FRINGE brand and unbranded stations), as we

see that the branded stations get a relatively higher portion of their shares from locked-in

customers. This is consistent with a story of brand loyalty.

21For the remainder of the figures in this section, including this one, our plots display equally-weighted four-week
moving averages.
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Finally, we present two further cuts of the data between branded firms and fringe firms.

Figure 8 presents the shares for each type of customer over time. Branded and fringe firms

attract approximately the same amount of free-agent customers, but branded firms have hig-

her shares of the locked-in customers, consistent with the above finding. Correspondingly,

branded firms have consistently less elastic locked-in customers, as displayed in Figure 9.
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Figure 5: Shares Over Time

(a) Free-Agent Customers
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(b) Locked-In Customers
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Figure 6: Elasticities Over Time

(a) Free Agent and Locked-In
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Figure 7: Portion from Locked-In Customers

(a) All Customers and Shares
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Figure 8: Shares Over Time
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Figure 9: Elasticities: Large Brands versus Fringe
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5 Empirical Application: Supply-Side Analysis

5.1 Supply-Side Estimation

Given our demand estimates, we construct the components in each firm’s Bellman equa-

tion from (5). This allows us to directly estimate the derivative of the continuation va-

lue, βE[V (r′, c′)|r, c,p]. We use the expected and unexpected costs estimated in our pass-

through section to estimate a model-restricted function for the continuation value. This

estimated function allows us to pursue a counterfactual merger simulation, which we do in

the next section.

Using our estimated demand parameters, we are able to recover the (derivative of) the

continuation value. Recall the dynamic FOC for the firm:

∂Sjt
∂pjt

(pjt − cjt) + Sjt + β
∂E [Vj(rt+1, ct+1, xt+1)|pt, rt, ct, xt]

∂pjt
= 0

We include state variables x that factor into firm beliefs and expectations but do not

affect demand. Our demand-side estimation allows for a direct estimate of the static FOC:
∂Sjt

∂pjt
(pjt − cjt) + Sjt. The implied derivative of the continuation value is the negative value

of the static FOC, which rationalizes the observed price given Bertrand price competition.

5.2 Results: Supply-Side Behavior

Summary statistics for the value of the derivative of the continuation value (DCV) are pre-

sented in Table 13. The mean and median are negative, which means that firms price lower

than the static profit-maximizing price implied by our demand model. The magnitudes are

significant: as the average (scaled) profit in our data is 0.029, this implies a roughly 4 per-

cent increase in profits from raising prices by 1 cent (recall that margins are approximately

21 cents per gallon).

We interpret this as arising from a dynamic incentive, though other explanations may be

plausible.22 Intuitively, firms are lowering prices to invest in future demand.

Table 13: Summary of Implied β ∂E[Vj(·)|·]
∂pjt

mean p25 p50 p75
All -0.122 -0.162 -0.093 -0.051

KY -0.141 -0.186 -0.111 -0.062
VA -0.107 -0.143 -0.082 -0.045

22For example, a component of this residual may be profits obtained by complementary products, such as food
sold at retail gasoline stations.
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To generate counterfactuals, we estimate how the DCV changes with state variables and

prices. We project the DCV onto several variables, including market characteristics, demand

shocks, expected and unexpected costs, and prices. The results are reported in Table 14.

The first two specifications report the coefficients from a regression. Specifications (3) and

(4) report the net effect once we run a regression with interactions for all of the variables.

Table 14: Dynamic FOC Regressions: dE[V ]/dP

(1) (2) (3) (4)
Main Main Interactions Interactions

Cost, Exp. −0.098∗∗∗ −0.111∗∗∗ −0.098∗∗∗ −0.098∗∗∗

(0.001) (0.015) (0.000) (0.005)

Cost, Unexp. −0.098∗∗∗ −0.096∗∗∗ −0.098∗∗∗ −0.101∗∗∗

(0.001) (0.003) (0.000) (0.001)

Cost, Tax −0.093∗∗∗ −0.057∗∗∗ −0.093∗∗∗ −0.092∗∗∗

(0.001) (0.003) (0.000) (0.001)

Locked-in Portion −1.136∗∗∗ −0.873∗∗∗ −1.136∗∗∗ −1.062∗∗∗

(0.002) (0.004) (0.001) (0.001)

Price 0.099∗∗∗ 0.110∗∗∗ 0.099∗∗∗ 0.101∗∗∗

(0.002) (0.003) (0.001) (0.001)

Price Squared 0.001∗∗∗ −0.001∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)

Cost, Exp. Change (30 d) 0.000 −0.012 0.000 0.000
(0.001) (0.015) (0.000) (0.005)

Demand Shock −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.005∗∗∗

(0.000) (0.000) (0.000) (0.000)

Mean Price (Rivals) 0.014∗∗∗ 0.011∗∗∗ 0.014∗∗∗ 0.013∗∗∗

(0.001) (0.002) (0.000) (0.001)

S.D. Price (Rivals) 0.004∗∗ 0.002 0.004∗∗∗ 0.003∗∗∗

(0.002) (0.002) (0.001) (0.001)

County-Brand + Time FEs X X
Structure Controls X X X X
Observations 109191 109191 109191 109191
R2 0.96 0.97 0.99 1.00
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

As the derivative of the continuation value with respect to price is negative, negative

coefficients imply a greater negative marginal impact of price on the continuation value.

Thus, negative coefficients, which move the DCV further from zero, may be interpreted

as exacerbating the effect of dynamics on pricing behavior. For example, the greater the
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amount of locked-in customers a brand has, the greater the dynamic effect on the pricing

decision.

Table 15: Dynamic FOC Regressions: Sensitivity [ln(|dE[V ]/dP |)]

(1) (2) (3) (4)
Main Main Interactions Interactions

Cost, Exp. 0.881∗∗∗ 1.572∗∗∗ 0.958∗∗∗ 1.428∗∗∗

(0.014) (0.211) (0.014) (0.200)

Cost, Unexp. 0.797∗∗∗ 0.713∗∗∗ 0.870∗∗∗ 0.845∗∗∗

(0.016) (0.038) (0.016) (0.036)

Cost, Tax 1.056∗∗∗ 0.615∗∗∗ 1.123∗∗∗ 0.847∗∗∗

(0.020) (0.042) (0.019) (0.039)

Locked-in Portion 5.733∗∗∗ 5.707∗∗∗ 6.033∗∗∗ 7.418∗∗∗

(0.043) (0.061) (0.042) (0.058)

Price −1.238∗∗∗ −1.069∗∗∗ −1.290∗∗∗ −0.939∗∗∗

(0.032) (0.041) (0.031) (0.039)

Price Squared −0.018∗∗∗ 0.012∗ −0.016∗∗∗ −0.016∗∗

(0.005) (0.007) (0.005) (0.006)

Cost, Exp. Change (30 d) 0.094∗∗∗ 0.961∗∗∗ 0.101∗∗∗ 0.586∗∗∗

(0.013) (0.223) (0.012) (0.210)

Demand Shock 0.170∗∗∗ 0.053∗∗∗ 0.160∗∗∗ 0.034∗∗∗

(0.002) (0.002) (0.002) (0.002)

Mean Price (Rivals) 0.187∗∗∗ 0.105∗∗∗ 0.243∗∗∗ 0.173∗∗∗

(0.026) (0.024) (0.025) (0.022)

S.D. Price (Rivals) 0.277∗∗∗ −0.127∗∗∗ 0.264∗∗∗ −0.168∗∗∗

(0.034) (0.030) (0.033) (0.028)

County-Brand + Time FEs X X
Structure Controls X X X X
Observations 109191 109191 109191 109191
R2 0.77 0.90 0.78 0.91
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

To show more directly how sensitive firms are to dynamic considerations, we also report

the results from regressions where we replace the value of the DCV with the logged absolute

value. This provides a measure of sensitivity, and larger coefficients indicate that dynamic

considerations are more impactful. The results are reported in Table 15. After accounting for

interactions among the variables, we find that changes in unexpected costs have a greater

impact on the continuation value than changes in expected costs. This corroborates the

reduced-form pass-through results from Figure 3, in which we find that the pass-through for
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unexpected costs is lower than for expected costs. Our model rationalizes this phenomenon

as arising from a change in the perceived impact of price on the continuation value.

5.3 Merger Simulation

To evaluate the effect of the dynamic effects in a merger context, we simulate a merger

between Marathon and BP, which are the number one and number four (non-fringe) in

terms of overall shares in our sample. Out of the 252 markets, they overlap in 74. In these

74 markets, the average HHI is 1500,23 and the mean change in HHI resulting from the

merger is 387. In 8 markets, the resulting HHIs are greater than 2500 and the changes are

greater than 200, which meet the typical thresholds that are presumed likely to enhance

market power. We allow the firms to merge at the beginning of September 2014, and we

calculate counterfactual prices and shares for the second half of our sample.

Our setting, with dynamic brand effects, puts a greater emphasis on the what exactly a

merger will be in practice. This is a nuanced question. Do the merging firms retain separate

brands, or convert all stations to a single brand? Do the customers of the old brand become

immediately attached to the new, or is there no transfer in brand loyalty?

Table 16: Merger Effects: Brand Loyalty Tranfers

Brands Price Share Profit
1 Marathon-BP 0.81 -0.20 7.70
2 Other -0.11 0.33 -2.80
3 Overall 0.29 -0.01 2.52

We consider two scenarios. In the first scenario, the merging firms retain all brand loyal

customers from both Marathon and BP. Table 16 displays the mean effects when all brand

effects transfer. The effects are quite small, with an average price increase for the merging

firms of less than one percent. Shares for these firms barely decline. As this is a low-margin

industry, these effects have an economically meaningful effect on profits, which increase

by 7.7 percent. Profits from the competitors fall, which results in almost no net effect on

industry profits. Interestingly, prices for competitors fall, which is the opposite of what we

usually expect after a merger.

In our second scenario, brand loyalty does not transfer at all: all of the BP customers

become free agents. Table 2 displays the results of this scenario. As expected, the loss of

brand-loyal customers decreases profits for the merging firms relative to the first scenario.

However, the merger occurs over a long enough time frame that most of this effect appears

to be compensated for by long-run behavior. Overall prices rise by about the same amount,

23As we treat the fringe as a profit-maximizing entity, we calculate HHI treating the fringe as one firm. This
will overstate the baseline HHI and the price response by competitors. The change in HHI is unaffected by this
abstraction.
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Table 17: Merger Effects: Brand Loyalty Does Not Transfer

Brands Price Share Profit
1 Marathon-BP 0.81 -0.76 6.79
2 Other -0.11 0.44 -2.69
3 Overall 0.28 -0.20 2.09

but overall shares fall more, relative to the first scenario. Intuitively, the stock of brand loyal

customers keep quantities up even when prices are raised.

Table 18: Merger Effects: Regressions

Price Share Profits

(1) (2) (3) (4) (5) (6)

HHI Delta (100) 0.129∗∗∗ −0.059∗ 1.072∗∗∗

(0.024) (0.033) (0.271)

Combined r 3.273∗∗∗ −1.295∗ 29.451∗∗∗

(0.493) (0.725) (5.503)

Observations 74 74 74 74 74 74
R2 0.274 0.376 0.040 0.042 0.176 0.282

Notes: Significance levels: ∗ 10 percent, ∗∗ 5 percent, ∗∗∗ 1 percent. The table
displays regressions of the estimated merger effects for the merging brands
on the change in HHI resulting from the merger and the combined locked-in
customers entering the merger. No constant is used in the regressions.

In Table 18, we regress the percentage effects for each market on indicators of the

strength of the merger: the HHI delta and the combined level of locked-in customers for

the merging brands. The coefficient on the first model indicates that an HHI change of 100

points would result, on average, in a 0.1 percent price change. For the second model, the

coefficient of 3.3 indicates that a combined loyalty share of 0.3 would result in a 1 percent

change in prices.

Table 19: Merger Effects: Static Model

Brands Price Share Profit
1 Marathon-BP 4.69 -17.22 31.45
2 Other 0.65 5.70 18.04
3 Overall 2.33 -5.68 24.33

Overall, these effects are small relative to what one might normally expect from a merger.

Even for the 8 markets that fall under the category of likely to increase market power, the

results are quite similar. For comparison, we report the results from a merger analysis using
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a static model in Table 19, which has average price effects of approximately 5 percent. How

do we interpret dynamic model? Though the merged firm has a static incentive to raise

prices, the dynamic incentive is also strengthened, as the firm accumulates more valuable

dynamic assets. These effects work to offset each other, relative to the effects arising in a

static analysis.

6 Conclusion

We develop a model of dynamic demand that accounts for the slow adjustment of prices

to changes in cost. The dynamics result from competing firms optimally setting prices to

customers that may become loyal to their current supplier. Using data from retail gasoline

markets, we first demonstrate that prices adjust slowly to cost changes, and that path of

price adjustment depends upon whether the costs change is expected or unexpected. This

finding demonstrates that importance of accounting for firm expectations when estimating

pass-through and estimating a demand model that can accommodate these short-run dyna-

mics.

We derive a new estimator that can identify dynamic demand parameters using data on

price, shares, and an instrument. Preliminary results suggest that about three-fourths of

retail gasoline customers become locked in to the firm from which they currently purchase

on a week-to-week basis, and that these loyal consumers are extremely price insensitive.

Conversely, we find that non-loyal customers are quite price sensitive. We evaluate the

dynamic incentives affecting prices, and we show, both theoretically and empirically, that

merger effects are muted by the presence of dynamic incentives.
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A Duopoly Steady-State Analysis

We implement the following procedure to solve numerically for the duopoly steady state:

1. Provide an initial guess for dp
dr .

2. Solve for pss and rss using the steady-state restrictions.

3. Take the numerical derivative of pss with respect to rss. We approximate the nu-

merical derivative by slightly perturbing rss by h, resolving for pss, and calculating
pss(r+h)−pss(r−h)

2h .

4. Solve again for pss and rss using the steady-state restrictions and the updated dp
dr .

5. If the changes in pss and rss between steps 2 and 4 fall below a critical value, and the

changes in each of the four elements of dpdr between steps 1 and 3 fall below a critical

then we have found all steady-state values. If the change in any of the unknowns is

above the critical value then repeat steps 1-4 using the updated values of dpdr .

B Common and Idiosyncratic Costs

In Figure 10, we present Pass-through results for common market-level costs. In Figure

11, we present Pass-through results controlling for the other firm’s prices.
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Figure 10: Cumulative Pass-through for Common Costs

(a) Unexpected Costs
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(b) Expected Costs
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Figure 11: Cumulative Pass-through Controlling for Rival Prices

(a) Unexpected Costs
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C Four-Parameter Heterogeneity Specification

Here we report summary statistics four our four-parameter estimates of firm-specific hete-

rogeneity.

Table 20: Pass-through Heterogeneity: Four-Parameter Specification

Parameter p10 p25 p50 p75 p90
Anticipation -23.8 -17.2 -6.5 -2.2 0.4
Rate 0.010 0.016 0.025 0.039 0.066
Duration 9.8 16.5 29.0 48.2 60.8
Finish 6.9 12.7 21.9 32.3 40.0
LR_PTR 0.362 0.532 0.711 0.896 1.177

Anticipation_Exp -43.7 -36.3 -28.2 -16.5 -5.4
Rate_Exp 0.015 0.018 0.022 0.029 0.047
Duration_Exp 21.6 35.3 51.7 63.4 73.5
Finish_Exp 10.1 15.6 22.8 29.6 37.0
LR_PTR_Exp 0.883 0.980 1.089 1.219 1.340

Offset -0.16 -0.11 -0.06 -0.00 0.05
Offset_Exp -0.27 -0.17 -0.07 0.02 0.10
Above_Zero 0.261 0.448 0.655 0.863 1.155
Above_Zero_Exp 0.855 0.937 1.014 1.102 1.215
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