
Haverford College Computer Science Tech Report 2012-01

Archived 06 August 2012

On the Scalability of Loop Tiling Techniques

David G. Wonnacott

Haverford College
Haverford, PA 19041

davew@cs.haverford.edu

Michelle Mills Strout

Colorado State University
Fort Collins, CO 80523

mstrout@cs.colostate.edu

Abstract

The challenge of extreme scale computing will test the limits of our ability to scale computa-

tional infrastructure. While much attention has been given to the scalability of hardware

designs and of the novel algorithms to be run thereon, and significant practical success has

been achieved with data-flow-based automatic parallelization of dense array codes, current

automatic parallelizers focus almost exclusively on transformations that are inherently not

fully scalable. We discuss the limitations on asymptotic scalability of the transformations

applied by successful automatic parallelizers like PLuTo, and review the literature of other

approaches to this problem. As part of this survey, we discuss both the scalability and imple-

mentation status of each current technique. Finally, we identify ongoing work that may

resolve this issue.

On the Scalability of Loop Tiling Techniques
David G. Wonnacott
Haverford College

Haverford, PA 19041
davew@cs.haverford.edu

Michelle Mills Strout
Colorado State University
Fort Collins, CO 80523

mstrout@cs.colostate.edu

Abstract—The challenge of extreme scale computing will test

the limits of our ability to scale computational infrastruc-

ture. While much attention has been given to the scalability

of hardware designs and of the novel algorithms to be run

thereon, and significant practical success has been achieved

with data-flow-based automatic parallelization of dense array

codes, current automatic parallelizers focus almost exclusively on

transformations that are inherently not fully scalable. We discuss

the limitations on asymptotic scalability of the transformations

applied by successful automatic parallelizers like PLuTo, and

review the literature of other approaches to this problem. As part

of this survey, we discuss both the scalability and implementation

status of each current technique. Finally, we identify ongoing

work that may resolve this issue.

I. INTRODUCTION

As extreme scale computing is likely to require extremely
fast processors in great number, peak performance will require
attention to both memory system performance and parallelism.
Both of these questions have been the subject of significant
prior work in a number of contexts, including the development
of novel algorithms, the introduction of new languages or
frameworks, and the development of automatic optimizers for
various classes of codes.

In efficient algorithms, libraries, and automatic optimizers,
some form of aggregation (e.g., tiling) is often used to im-
prove cache line utilization and avoid false sharing [Wol89],
[IT88], [WL91]. The general approach is to group parts of the
computation into tiles and create a data-flow graph where each
tile is a task. The execution of tiles generally is ordered so that
no tile begins execution until after the completion of all tiles
from which it receives data-flow; thus each tile can be executed
without internal communication delays or synchronization (i.e.
atomically). Since there are sets of tiles that can be executed in
parallel, tiling can be used to address issues of parallelization
and memory traffic control simultaneously.

The construction of the task/data-flow graph varies with the
nature of the problem being tiled. For automatic parallelization
of dense array codes, tiles contain sets of loop iterations.
The polyhedral model provides a powerful framework for
specifying tiling transformations and determining when tiling
is legal through the use of array data-flow analysis [Fea91],
[PW92], [PW98]. (See [Col02] for a more complete treatment
of the polyhedral framework.)

After tiling, the task/data-flow graph can be scheduled dy-
namically [QOIQOvdG09], [BVB+09], [BLKD09], [SYD09],
[HRS09], [WHW09], [CNvdGZ10], [CKV10], [LZDK11], or
it can be scheduled statically in a bulk synchronous fashion,

as is the default in the widely-used OpenMP [Ope] system.
However, no (correct) algorithm for scheduling a tile/data-
flow graph will produce more parallelism than is implicit
in the graph itself, and thus good performance requires that
the graph contain parallelism of sufficient scale for the target
architecture.

For non-trivial examples, tiling often requires loop skewing
with respect to the time step loop [SL99], [Won02], which
is often referred to as time skewing [Won02], [Won00].
The PLuTo automatic parallelizer [KBB+07], [BHR08] has
demonstrated considerable success in obtaining high perfor-
mance on machines with moderate degrees of parallelism by
using this technique to automatically produce OpenMP parallel
code.

Unfortunately, the specific tiling transformations that have
actually been implemented and released in tools like PLuTo
involve pipelined execution of tiles, which prevents full con-
currency from the start. The lack of full concurrency at the
start is sometimes dismissed as a start-up cost that will be
trivially small for realistic problem sizes. While this may
be true for the degrees of parallelism provided by current
multi-core processors, this choice of tiling can impact the
asymptotic degree of parallelism available if we try to scale
up data set size and machine size together, as suggested
by Gustafson [Gus88]. Furthermore, Van der Wijngaart et
al. [VSMP96] have modeled and experimentally demonstrated
the load imbalance that occurs on distributed memory ma-
chines when using pipelined parallelism.

In this paper, we review the status of implemented and
proposed techniques for tiling dense array codes (including
the important sub-case of stencil codes) in an attempt to
determine whether or not the techniques that are currently
being implemented are well suited to machines with higher
demands for parallelism and control of memory traffic and
communication. Unfortunately, the published literature on
tiling for automatic parallelization seems to be divided into two
disjoint categories: “practical” papers describing implemented
but unscalable techniques for automatic parallelizers for dense
array codes, and “theoretical” papers describing techniques
that scale well but are either not implemented or not integrated
into a general automatic parallelizer.

In Section II of this paper, we demonstrate that the approach
currently used by PLuTo does not allow full scaling as de-
scribed by Gustafson [Gus88]. In Section III, we survey other
tilings that have been suggested in the published literature
classify each approach as fully scalable or not, and discuss

Haverford CS Tech Report 2012-01: On the Scalability of Loop Tiling Techniques 2

its implementation status in current automatic parallelization
tools. We have recently learned of ongoing work by Bond-
hugula et al. [BPB12] of a tiling technique that we believe
will be scalable, and we briefly mention it in Section III. We
believe the proposed approach will address our concerns about
asymptotic complexity. Section V presents our conclusions:
we believe the scalable/implemented dichotomy is an artifact
of current design choices, not a fundamental limitation of
the underlying software infrastructure, and thus is something
that can be addressed via a shift in emphasis by the research
community.

II. TILING AND SCALABILITY

In his 1988 article “Reevaluating Amdahl’s Law” [Gus88],
Gustafson observed that, in actual practice, “One does not
take a fixed size problem and run it on various numbers of
processors”, but rather “expands [the problem] to make use
of the increased facilities”. In particular, in the successful
parallelizations he described, “as a first approximation, the
amount of work that can be done in parallel varies linearly
with the number of processors”, and it is “most realistic to
assume run time, not problem size, is constant”. This form
of scaling is typically referred to as weak scaling or scalable
parallelism, as opposed to the strong scaling needed to give
speed-up proportional to the number of processors for a fixed-
size problem.

Weak scaling can be found in many data parallel codes,
in which many elements of a large array can be updated si-
multaneously; the flow of information among the computations
constrains the ways in which we can organize computations for
concurrent execution. To illustrate this principle graphically,
we will adopt most of the conventions of [Won00], in which
each execution of a repeatedly-executed statement is drawn
as an individual node, with arcs denoting flow of information
(or other dependences, in a non-data-flow context). The time
axis, or outer loop, moves from left to right across the page,
and the grouping of nodes into tiles is illustrated by drawing
variously shaped boxes around sets of nodes (rather than by
repositioning the nodes on the page and using only rectangular
boxes to indicate tiles, as in some other work).

Figures 1 and 2 illustrate this graphical style, and the
possibility of weak scaling, for a simple loop nest that updates
performs T updates to N pseudo-random values in an array
R (with T = 5 and N = 8 in Fig. 2; line-less arrowheads
in Fig. 2 indicate values that are live-in in Fig. 1). Such a
loop nest might be used as part of a Monte Carlo simulation,
but for simplicity we show only the updates to the random
seeds here. Since each value of R[i] depends on the value of
R[i] in the previous time step, there is no flow of information
between the different random sequences, and we can enable
concurrent execution by dividing the operations into groups or
tiles in which all references to any given array element are in
the same tile (as outlined in the figure). Weak scaling occurs
if P processors can execute P such tiles in the time needed
for one processor to execute one such tile.

// update N pseudo-random seeds T times

// assumes R[] is initialized

for t = 1 to T

for i = 0 to N-1

R[i] = (a

*

R[i]+c) % m

Fig. 1. “Embarrassingly Parallel” Loop Nest.

Fig. 2. Iteration Space, Data-flow, and Tiling, of Fig. 1.

The example of Figures 1 and 2 is often referred to as
embarrassingly parallel, since weak scaling can be achieved
in a relatively straightforward manner. This example illustrates
both scalable parallelism and what Wonnacott called scalable
locality [Won02]: the ability to scale up, with some problem
size parameter, the amount of processing done per reference to
main memory. Consider the execution of a tile of size (⌧⇥�),
i.e., ⌧ iterations of the t (time) loop � iterations of the i (data)
loop. If we assume that the values of R reside in main memory
prior to the execution of the loops of Fig. 1, we cannot avoid
doing � loads from main memory for one tile. However, if
we perform all ⌧ updates to one element before moving on to
the next, we can increase the ratio of computation to memory
traffic by increasing ⌧ .

Thus for this embarrassingly parallel example, scalable
parallelism and scalable locality are both straight forward.
When the flow of information among computations is more
complex, exposing scalable parallelism and scalable locality is
less straightforward. This section details the parallel scalability
issues that occur with pipelined tiles.

A. Dependences, Loop Skewing, and Pipelined Parallelism

In a Jacobi stencil computation, each array element is
updated with an average of its value and its neighbor’s values,
as shown (for a one-dimensional array) in Fig. 3. If we were to

Haverford CS Tech Report 2012-01: On the Scalability of Loop Tiling Techniques 3

for t = 1 to T

for i = 1 to N-2

new[i] = (A[i-1]+2

*

A[i]+A[i+1])/4

for i = 1 to N-2

A[i] = new[i]

Fig. 3. Three Point Jacobi Stencil.

try to group loop iterations of this code as we did in Fig. 2, the
iterations at the top and bottom edges of each tile would refer
to elements from an neighboring tile. Such tilings are (appro-
priately) avoided by automatic parallelizers, as they produce
high communication/synchronization costs. (The degenerate
case of ⌧ = 1 avoids intra-tile synchronization, but prevents
scalable locality.)

Fig. 4 illustrates the usual tiling performed by automatic
parallelizers such as PLuTo, though for readability our figure
shows far fewer loop iterations per tile. Nodes represent
averaging operations; copies from new into A are omitted for
simplicity, as they have no impact on data-flow. For the sake of
readability, the tiles shown in Fig. 4 contain far fewer iterations
then would be typical. Tile sizes depend on a number of
hardware performance characteristics; the PLuTo default is to
create tiles of size 32 in every dimension [Bon12a], though this
can be overridden at compile time. For some conditions, such
as when processors dramatically outpace their memory system
or nearest-neighbor communication infrastructure, much larger
sizes are appropriate: [Won02] used tiles of size 1200 by 500
iterations, and [ABDW12] used size 1250 by 1250.

Array data flow analysis [Fea91], [PW92], [PW98] is well
understood for programs that fit the polyhedral model, and
can be used to deduce the data-flow arcs from the original
imperative code. The number of data-flow arcs crossing a tile
boundary describes the volume of communication between
tiles; in most approaches to tiling for distributed systems,
inter-processor communication is aggregated and takes place
between executions of tiles, rather than in the middle of
any tile. The topology of the inter-tile data-flow thus gives
the constraints on possible concurrent execution of tiles. For
Fig. 4, concurrent execution is possible in pipelined fashion, in
which execution of tiles progresses as a wavefront that begins
with the lower left tile, then simultaneously executes the two
tiles bordering it (above and to the right), and continues to
each wave of tiles adjacent to the just-completed wave.

As has been noted in the literature, this is not the only
way to tile this set of iterations; however, other tilings are
not (currently) selected by fully-automatic loop parallelizers
such as Pluto [KBB+07]. Even the semi-automatic AlphaZ
system [YBG+12], which is designed to allow programmers
to experiment with different optimization strategies, cannot
express many of these tilings. If such tools are to be considered
for extreme scale computing, we must consider whether or not
the tiling strategies they support provide the necessary scaling
characteristics.

Fig. 4. Iteration Space, Data-flow and Tiling of Fig. 3.

B. Scalability

To support our claim that this pipelined tiling does not
always provide scalable parallelism, it is sufficient to show that
it fails to scale on one of the classic examples for which it has
shown dramatic success for low-degree parallelism, such as the
easily-visualized one-dimensional Jacobi stencil of Fig. 3. We
will first do so, and then discuss the issue in higher dimensions.

For some problem sizes, the tiling of Fig. 4 can come
close to realizing scalable parallelism: if P = N

�+⌧ and T
⌧

is much larger than P , most of the execution is done with P
processors. Fig. 5 illustrates the first 8⌧ time steps of such
an example, with P = 8, � = 2⌧ , and N = P (� + ⌧) (the
ellipsis on the right indicates a large number of additional time
steps). The tiles executed in the first 12 waves are numbered
1 to 12 for reference, and individual iterations and data-
flow are omitted for clarity. For all iterations after 11, this
tiling provides enough parallelism to keep eight processors
busy for this problem size, and for large T the running
time approaches 1

8 of the sequential execution time (plus
communication/synchronization time, which we will discuss
later). If we double both N and P , a similar argument shows
the running time approaches 1

16 of the now twice-as-large
sequential execution time, i.e., the same parallel execution
time, as described by Gustafson.

However, as N and P continue to grow, the assumption
that T

⌧ � P eventually fails, and scalability is lost. Consider
what happens in Fig. 5 if T = 8⌧ , i.e., the ellipsis corresponds
to 0 additional time steps. At this point, doubling N and P
produces a figure that is twice as tall, but no wider; parallelism
is limited to degree 8, and execution with 16 processors
requires 35 steps rather than the 23 needed for Fig. 5 when
T = 8⌧ (note that the upper-right region is symmetric with

Haverford CS Tech Report 2012-01: On the Scalability of Loop Tiling Techniques 4

Fig. 5. Wavefronts of Pipelined Tile Execution.

the lower-left). Thus, communication-free execution time has
increased rather than remaining constant. Increasing T (rather
than N) with P is no better, and in fact no combination of
N and T increase can allow 16 processors to execute twice
the work of 8 in the same 23 wavefronts: adding even one
full row or one full column of tiles means 24 wavefronts are
needed.

Even if we start with a more realistic problem size, e.g.,
one for which N � T � P , the pipelined tiling still limits
scalability. Consider what happens we apply the tiling of Fig. 5
with parameters N = 10000�, T = 1000⌧, P = 100, in which
over 99% of the tiles can be run with full 100-fold parallelism,
and then scale up N and P by successive factors of ten. Our
first jump in size gives N = 100000�, T = 1000⌧, P = 1000,
which still has full (1,000-fold) parallelism in over 98% of the
tiles. After the next jump, to N = 1000000�, T = 1000⌧, P =
10000 there is no 10,000-fold concurrency in the problem.
Even if the application programmer is willing to scale up T
rather than just N , in an attempt to reach full machine utiliza-
tion, the execution for N = 38730�, T = 25820⌧, P = 10000
still achieves 10,000-fold parallelism in only 85% of the 109

tiles. No combination of N and T allows any 100,000-fold
parallelism on 1010 tiles with this tiling.

C. A Note on Communication Cost

The above analysis ignores time for synchronization and
communication, as if the computation were to be executed
on the notoriously unscalable PRAM abstraction. Note that
this is not an appallingly unrealistic assumption: the costs
of communication between processors, or between processors
and RAM, can be controlled by proper setting of tile sizes, as

discussed in [Won00], [KBB+07] and other work.

D. Higher-Dimensional Codes

While the two-dimensional iteration space of the three-point
Jacobi stencil is easy to visualize on paper, many of the
subtleties of tiling techniques are only evident in problems
with at least two dimensions of data and one of time. For
pipelined tiling, the conflict between scalability is essentially
the same in higher dimensions: for a pipelined tiling of a
hyper-rectangular iteration space of dimension d, eventually
the amount of work must grow by O(kd) to achieve parallelism
O(kd�1).

Conversely, in higher dimensions, the existence of a wave-
front that is perpendicular to the time dimension (or any
other face of a hyper-rectangular iteration space) is frequently
the sign of a parallelization that admits some form of weak
scalability. However, as we will see, it may be the case that
scaling of parallelism is restricted to only some of the spatial
dimensions.

III. VARIATIONS ON THE TILING THEME

The published literature describes many approaches to loop
tiling. In this section, we survey these approaches, grouping
together those that produce similar (or identical) tilings. Our
descriptions focus primarily on the tiling that would be used
for the code of Fig. 3, which is used as an introductory
example in many of the descriptions. We illustrate the tilings
of this code with figures that are analogous to our Fig. 5, with
gray shading highlighting one tile from time step two in each
figure. We delve into the complexities of more complex codes
only as necessary to make our point.

Note that we focus on distinct tile shapes, rather than
distinctions among algorithms used to deduce tile shape or
size or the manner in which individual tiles are scheduled or
assigned to processors. For example we do not specifically
discuss the “CORALS” approach [SSPS10], in which an
iteration space is recursively subdivided into parallelograms,
avoiding the need to choose a tile size in advance of starting
the computation. Regardless of size, variation in size, and
algorithmic provenence, the information flow among atomic
parallelogram tiles still forces execution to proceed along the
diagonal wavefront, and thus still limits asymptotic scalability.

A. Overlapped Tiling

A number of projects have experimented with what is com-
monly called overlapped tiling [SO98], [BDQ98], [ADF+00],
[RIF01], [DH01], [RD02], [KBB+07], [CSN+10], [NSC+10],
[ZGG+12]. In overlapped tiling for stencil computations, a
larger halo is maintained so that each processor can execute
more than one time step before needing to communicate with
other processors. Fig. 6 illustrates this tiling. Two individual
tiles from the second wavefront have been indicated with
shading, one with gray and one with polkadots; the triangular
polkadotted and gray region is in both tiles, and thus represents
redundant computation. This overlap means that all tiles along

Haverford CS Tech Report 2012-01: On the Scalability of Loop Tiling Techniques 5

Fig. 6. Overlapped Tiling.

each vertical wavefront can be executed in parallel while still
improving temporal data locality.

In terms of parallelism scalability, overlapped tiling does
scale because all of the tiles can be executed in parallel. If a
two-dimensional tiling in a two-dimensional spatial part of a
stencil is used as the seed partition, then two-dimensions of
parallelism will be available with no need to fill a pipeline.
This means that as the data scale, so will the parallelism.

The problem with overlapped tiling is that redundant com-
putation is performed. This leads to a trade-off between
parallel scalability and execution time. Tile size selection must
also consider the effect of the expanded memory footprint
caused by overlapped tiling.

Auto-tuning between overlapped sparse tiling and non-
overlapped sparse tiling [SCF+02], [SCFK04] for irregular
iteration spaces has also been investigated by Demmel et
al. [DHMY08] in the context of iterative sparse matrix com-
putations where the tiling is a run-time reordering transforma-
tion [SCF03].

B. Trapezoidal Tiling
Frigo and Strumpen [FS05], [FS06], [FS09] propose an

algorithm for limiting the asymptotic cache miss rate of “an
idealized parallel machine” while providing scalable paral-
lelism. Fig. 7 illustrates that even a simplified version of their
approach can enable weak scaling for the examples we discuss
here (their full algorithm involves a variety of possible decom-
position steps; our figure is based on Figure 4 of [FS09]). In
our Fig. 7, the collection of trapezoids marked “1” can start
simultaneously; after these tiles complete, the mirror-image
trapezoids that fill the spaces between them, marked “2”, can
all be executed; after these steps, a similar pair of sets of tiles
“3” and “4” complete another ⌧ time steps of computation,
etc. For discussion of the actual transformation used by Frigo
and Strumpen, and its asymptotic behavior, see [FS09].

Fig. 7. Trapezoidal Tiling.

The limitation of this approach is not its scalability,
but rather the challenge of implementing it in a general-
purpose compiler. Tang et al. [TCK+11] have developed
the Pochoir compiler, based on a variant of Frigo and
Strumpen’s techniques with a higher degree of asymptotic
concurrency [TCK+11]. However, Pochoir handles a special-
ized language that allows only stencil computations. Tools like
PLuTo handle a larger domain of dense array codes; it may
be possible to generalize trapezoidal tiling to PLuTo’s domain,
but we know of no such work.

C. Diamond Tiling

Strzodka et al. [SSPS11], [SSP11] present the CATS al-
gorithm for creating diamond “tube” tiles in a 3-d iteration
space. The diamonds occur in the time dimension and one
data dimension, as in Fig. 8. The tube aspect occurs because
there is no tiling in the other space dimension. Each diamond
tube can be executed in parallel with all other diamond tubes
within a temporal row of diamond tubes. For example, in Fig. 8
all diamonds labeled “1” can be executed in parallel, after
which all diamonds labeled “2” can be executed in parallel,
etc. Within each diamond tube, the CATS approach schedules
another level of wavefront parallelism at the granularity of
iteration points.

Although Strzodka et al. [SSPS11] do not use diamond
tiles for 1-d data/2-d iteration space, diamond tiles are parallel
scalable within that context. They actually focus on the 2-d
data/3-d iteration space, where asymptotically, diamond tiling
only scales for one data dimension. The outermost level of
parallelism over diamond tubes only scales with one dimension
of data since the diamond tiling occurs across time and one
data dimension. On page 2 of [SSPS11], Strzodka et al.
explicitly state that their results are somewhat surprising in

Haverford CS Tech Report 2012-01: On the Scalability of Loop Tiling Techniques 6

Fig. 8. One data dimension and the time dimension in a diamond
tiling [SSPS11]. The diamond extends into a diamond tube in the second
data dimension.

that asymptotically their behavior should not be as good as
previously presented tiling approaches, but the performance
they observe is excellent probably due to the concurrent
parallel startup that the diamond tiles provide.

Diamond tiling is a practical approach that can perform
better than pipelined tiling approaches because it avoids the
pipeline fill and drain issue. The diamond tube also has advan-
tages in terms of intra-tile performance: fine-grained wavefront
parallelism and leveraging pre-fetchers. The disadvantages of
the diamond tiling approach are that it has not been expressed
within a framework such as the polyhedral model (although
it would be possible, just not with rectangular tiles); that the
approach does not cleanly extend to higher dimensions of data
(only one dimension of diamond tiles are possible with other
dimensions doing some form of pipelined or split tiling); and
that the outermost level of parallelism can only scale with one
data dimension.

D. Molecular Tiling
Wonnacott [Won00] described a tiling for stencils that

allows true weak scaling for higher-dimensional stencils, per-
forms no redundant work, and contains tiles that are all the
same shape. However, Wonnacott’s molecular tiles required
mid-tile communication steps, as per Pugh and Rosser’s iter-
ation space slicing [PR99] and illustrated in Fig. 9. Each tile
first executes its send slice (labeled “S”), the set of iterations
that produce values that will be needed by another currently-
executing tile, and then sends those values; it then goes on
to execute its compute slice (“C”), the set of iterations that
require no information from any other currently-executing tile;
finally, each tile receives incoming values and executes its
receive slice (“R”), the set of iterations that require these data.
In higher dimensions, Wonnacott discussed extension of the
parallelograms into prisms (as diamonds are extended into

Fig. 9. Molecular tiling.

diamond tubes in the diamond tiling), but also presented a
multi-stage sequence of send and receive slices to provide full
scalability.

Once again, a transformation with potential for true weak
scaling remains unrealized due to implementation challenges.
No implementation was ever released for iteration space
slicing [PR99]. For the restricted case of stencil computations,
these molecular tiles can be described without reference to
iteration space slicing, but they make extensive use of modulo
constraints supported by the Omega Library’s code generation
algorithms [KPR95], and Omega has no direct facility for
generating the required communication primitives.

The developers of PLuTo explored a similar split
tiling [KBB+07] approach, and demonstrated improved per-
formance over the pipelined tiling, but this approach was not
used for the released implementation of PLuTo.

E. A New Hope

We have recently learned of ongoing work on the PLuTo
system [BPB12] that we believe will address the issue of true
scalability without placing unrealizable demands on the code
generator. The authors frame their proposal in terms of “en-
abling concurrent start-up” rather than improving asymptotic
scalability. However, our hand-constructed examples encour-
age us to suspect that this tiling provides true weak scaling
(though we have not yet constructed a proof).

The authors of [BPB12] discuss scalability and show im-
proved results (vs. pipelined tiling) for current shared-memory
systems up to 16 cores. However, they do not discuss asymp-
totic complexity. Future collaborations could lead to a detailed
theoretical and larger-scale empirical study of the scalability of
this technique, using the distributed tile execution techniques
of [ABDW12] or [Bon12b].

Haverford CS Tech Report 2012-01: On the Scalability of Loop Tiling Techniques 7

F. A Note on Implementation Challenges

The pipelined tile execution shown in Figures 4 and 5 is
often chosen for ease of implementation in compilers based
on the polyhedral model. Such compilers typically combine all
iterations of all statements into one large iteration space; the
pipelined tiling can then be seen as a simple linear transforma-
tion of this space, followed by a tiling with rectangular solids.
This approach works well regardless of choice of software
infrastructure within the polyhedral model.

The other transformations may be more sensitive to choice
of software infrastructure, or the subtle use thereof. At this
time, we do not have an exact list of which transformations can
be expressed with which transformation and code generation
libraries. We hope to better understand the expressiveness of
various polyhedral libraries than can be used within compilers,
as well as tools that allow the direct control of these libraries
from a text input, such as AlphaZ [YBG+12] and the Omega
Calculator [KMP+96].

IV. ACKNOWLEDGMENTS

This work was supported by NSF Grant CCF-0943455, by
a Department of Energy Early Career Grant DE-SC0003956,
and the CACHE Institute grant DE-SC04030.

V. CONCLUSIONS

Current work on loop tiling appears to exhibit a dichotomy
between largely unimplemented explorations of asymptotically
high degrees of parallelism and carefully tuned implementa-
tions that restrict or inhibit scalable parallelism. This appears
to result from the challenge of general implementation of
scalable approaches. The pipelined approach requires only
a linear transformation of the iteration space followed by
rectangular tiling, but does not provide true scalable paral-
lelism. Diamond tiling scales with only one data dimension.
Overlapped, trapezoidal, and molecular tiling each pose im-
plementation challenges (due to redundant work, non-uniform
tile shape/orientation, or non-atomic tiles, respectively).

We believe automatic parallelization for extreme scale
computing will require a tuned implementation of a general
technique that does not inhibit or restrict scalability; thus
future work in this area must address scalability, generality,
and quality of implementation. We are optimistic that ongoing
work may already provide an answer to this to dilemma, but
further study is required for confirmation.

REFERENCES

[ABDW12] Mohamed Abdalkader, Ian Burnette, Tim Douglas, and
David G. Wonnacott. Distributed shared memory and
compiler-induced scalable locality for scalable cluster per-
formance. Cluster Computing and the Grid, IEEE Interna-
tional Symposium on, 0:688–689, 2012.

[ADF+00] Gabrielle Allen, Thomas Dramlitsch, Ian Foster, Tom
Goodale, Nick Karonis, Matei Ripeanu, Ed Seidel, and
Brian Toonen. The cactus code: A problem solving en-
vironment for the grid. In Proceedings of the Ninth IEEE
International Symposium on High Performance Distributed
Computing (HPDC9), Pittsburg, PA, USA, 2000.

[BDQ98] Frederico Bassetti, Kei Davis, and Dan Quinlan. Optimizing
transformations of stencil operations for parallel object-
oriented scientific frameworks on cache-based architectures.
Lecture Notes in Computer Science, 1505, 1998.

[BHR08] Uday Bondhugula, Albert Hartono, and J. Ramanujam. A
practical automatic polyhedral parallelizer and locality op-
timizer. In In PLDI 08: Proceedings of the ACM SIGPLAN
2008 conference on Programming language design and
implementation, 2008.

[BLKD09] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack
Dongarra. A class of parallel tiled linear algebra algorithms
for multicore architectures. Parallel Comput., 35(1):38–53,
2009.

[Bon12a] Uday Bondhugula. Personal communication, July 2012.
[Bon12b] Uday Bondhugula. Compiling affine loop nests for

distributed-memory parallel architectures. Preprint, 2012.
[BPB12] Vinayaka Bandishti, Irshad Pananilath, and Uday Bond-

hugula. Tiling stencil computations to maximize parallelism.
Preprint, to appear in SuperComputing ’12, 2012.

[BVB+09] Muthu Manikandan Baskaran, Nagavijayalakshmi Vy-
dyanathan, Uday Kumar Reddy Bondhugula, J. Ramanujam,
Atanas Rountev, and P. Sadayappan. Compiler-assisted
dynamic scheduling for effective parallelization of loop
nests on multicore processors. PPOPP, 44(4):219–228,
2009.

[CKV10] Aparna Chandramowlishwaran, Kathleen Knobe, and
Richard W. Vuduc. Performance evaluation of concurrent
collections on high-performance multicore computing sys-
tems. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2010.

[CNvdGZ10] Ernie Chan, Jim Nagle, Robert van de Geijn, and Field Van
Zee. Transforming linear algebra libraries: From abstraction
to parallelism. In Proceedings of the 15th International
Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS), 2010.

[Col02] Jean-Francois Collard. Reasoning about Program Trans-
formations. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2002.

[CSN+10] M. Christen, Olaf Schenk, E. Neufeld, M. Paulides, and
H. Burkhart. Manycore Stencil Computations in Hyperther-
mia Applications. In J. Dongarra, D. Bader, and J. Kurzak,
editors, Scientific Computing with Multicore and Accelera-
tors, pages 255–277. CRC Press, 2010.

[DH01] Chris Ding and Yun He. A ghost cell expansion method for
reducing communications in solving pde problems. In Pro-
ceedings of the ACM/IEEE Conference on Supercomputing,
Supercomputing ’01, pages 50–50, New York, NY, USA,
2001. ACM.

[DHMY08] James Demmel, Mark Hoemmen, Marghoob Mohiyuddin,
and Katherine Yelick. Avoiding communication in sparse
matrix computations. In Proceedings of International Par-
allel and Distributed Processing Symposium (IPDPS), Los
Alamitos, CA, USA, 2008. IEEE Computer Society.

[Fea91] Paul Feautrier. Dataflow analysis of scalar and array
references. International Journal of Parallel Programming,
20(1):23–53, February 1991.

[FS05] Matteo Frigo and Volker Strumpen. Cache oblivious stencil
computations. In Proceedings of the 19th annual interna-
tional conference on Supercomputing, ICS ’05, pages 361–
366, New York, NY, USA, 2005. ACM.

[FS06] Matteo Frigo and Volker Strumpen. The cache complexity
of multithreaded cache oblivious algorithms. In Proceedings
of the eighteenth annual ACM symposium on Parallelism in
algorithms and architectures, SPAA ’06, pages 271–280,
New York, NY, USA, 2006. ACM.

[FS09] Matteo Frigo and Volker Strumpen. The cache complexity
of multithreaded cache oblivious algorithms. Theor. Comp.
Sys., 45(2):203–233, June 2009.

[Gus88] John L. Gustfson. Reevaluating Amdahl’s law. Communi-
cations of the ACM, 31(5):532–533, May 1988.

[HRS09] J. D. Hogg, J. K. Reid, and J. A. Scott. A dag-based sparse
cholesky solver for multicore architectures. Technical report,
Science and Technology Facilities Council, April 27, 2009.

Haverford CS Tech Report 2012-01: On the Scalability of Loop Tiling Techniques 8

[IT88] F. Irigoin and R. Triolet. Supernode partitioning. In Confer-
ence Record of the Fifteenth ACM Symposium on Principles
of Programming Languages, pages 319–329, 1988.

[KBB+07] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bond-
hugula, J. Ramanujam, Atanas Rountev, and P Sadayappan.
Effective automatic parallelization of stencil computations.
In Proceedings of Programming Languages Design and
Implementation (PLDI), volume 42, pages 235–244, New
York, NY, USA, 2007. ACM.

[KMP+96] Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser,
Tatiana Shpeisman, and David Wonnacott. The Omega
Calculator and Library. Technical report, Dept. of Computer
Science, University of Maryland, College Park, April 1996.

[KPR95] Wayne Kelly, William Pugh, and Evan Rosser. Code
generation for multiple mappings. In The 5th Symposium
on the Frontiers of Massively Parallel Computation, pages
332–341, McLean, Virginia, February 1995.

[LZDK11] Jun Liu, Yuanrui Zhang, Wei Ding, and Mahmut T. Kan-
demir. On-chip cache hierarchy-aware tile scheduling for
multicore machines. In Proceedings of the CGO 2011,
The 9th International Symposium on Code Generation and
Optimization, pages 161–170, 2011.

[NSC+10] Anthony Nguyen, Nadathur Satish, Jatin Chhugani,
Changkyu Kim, and Pradeep Dubey. 3.5-d blocking opti-
mization for stencil computations on modern cpus and gpus.
In Proceedings of the ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and
Analysis, SC ’10, pages 1–13, Washington, DC, USA, 2010.
IEEE Computer Society.

[Ope] OpenMP. http://openmp.org/wp/.
[PR99] William Pugh and Evan Rosser. Iteration slicing for lo-

cality. In 12th International Workshop on Languages and
Compilers for Parallel Computing, August 1999.

[PW92] William Pugh and David Wonnacott. Eliminating false data
dependences using the Omega test. In SIGPLAN Conference
on Programming Language Design and Implementation,
pages 140–151, San Francisco, California, June 1992.

[PW98] William Pugh and David Wonnacott. Constraint-based
array dependence analysis. ACM Trans. on Programming
Languages and Systems, 20(3):635–678, May 1998.

[QOIQOvdG09] Gregorio Quintana-Ortı́, Francisco D. Igual, Enrique S.
Quintana-Ortı́, and Robert A. van de Geijn. Solving
dense linear systems on platforms with multiple hardware
accelerators. In Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming (PPOPP), pages 121–130, New York, NY, USA, 2009.
ACM.

[RD02] Fabrice Rastello and Thierry Dauxois. Efficient tiling for an
ode discrete integration program: Redundant tasks instead
of trapezoidal shaped-tiles. In Proceedings of the 16th In-
ternational Parallel and Distributed Processing Symposium,
IPDPS ’02, pages 138–, Washington, DC, USA, 2002. IEEE
Computer Society.

[RIF01] Matei Ripeanu, Adriana Iamnitchi, and Ian T. Foster. Cactus
application: Performance predictions in grid environments.
In Proceedings of the 7th International Euro-Par Conference
Manchester on Parallel Processing, Euro-Par ’01, pages
807–816, London, UK, UK, 2001. Springer-Verlag.

[SCF+02] Michelle Mills Strout, Larry Carter, Jeanne Ferrante,
Jonathan Freeman, and Barbara Kreaseck. Combining
performance aspects of irregular Gauss-Seidel via sparse
tiling. In Proceedings of the 15th Workshop on Languages
and Compilers for Parallel Computing (LCPC), Berlin /
Heidelberg, July 2002. Springer.

[SCF03] Michelle Mills Strout, Larry Carter, and Jeanne Ferrante.
Compile-time composition of run-time data and iteration re-
orderings. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), New York, NY, USA, June 2003. ACM.

[SCFK04] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and
Barbara Kreaseck. Sparse tiling for stationary iterative meth-
ods. International Journal of High Performance Computing
Applications, 18(1):95–114, February 2004.

[SL99] Yonghong Song and Zhiyuan Li. New tiling techniques to
improve cache temporal locality. ACM SIGPLAN Notices
(PLDI), 34(5):215–228, May 1999.

[SO98] Aaron Sawdey and Matthew T. O’Keefe. Program analysis
of overlap area usage in self-similar parallel programs. In
Proceedings of the 10th International Workshop on Lan-
guages and Compilers for Parallel Computing, LCPC ’97,
pages 79–93, London, UK, UK, 1998. Springer-Verlag.

[SSP11] Robert Strzodka, Mohammed Shaheen, and Dawid Pajak.
Time skewing made simple. In Calin Cascaval and Pen-
Chung Yew, editors, PPOPP, pages 295–296. ACM, 2011.

[SSPS10] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and
Hans-Peter Seidel. Cache oblivious parallelograms in it-
erative stencil computations. In ICS ’10: Proceedings of
the 24th ACM International Conference on Supercomputing,
pages 49–59. ACM, June 2010.

[SSPS11] Robert Strzodka, Mohammed Shaheen, Dawid Pajak, and
Hans-Peter Seidel. Cache accurate time skewing in iterative
stencil computations. In Proceedings of the 40th Inter-
national Conference on Parallel Processing (ICPP), pages
517–581, Taipei, Taiwan, September 2011. IEEE Computer
Society.

[SYD09] Fengguang Song, Asim YarKhan, and Jack Dongarra. Dy-
namic task scheduling for linear algebra algorithms on
distributed-memory multicore systems. In Proceedings of
the Conference on High Performance Computing Network-
ing, Storage and Analysis (SC), pages 1–11, New York, NY,
USA, 2009. ACM.

[TCK+11] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul,
Chi-Keung Luk, and Charles E. Leiserson. The pochoir sten-
cil compiler. In Proceedings of the 23rd ACM symposium
on Parallelism in algorithms and architectures, SPAA ’11,
pages 117–128, New York, NY, USA, 2011. ACM.

[VSMP96] R. F. Van der Wijngaart, S. R. Sarukkai, Mehra, and P.
The effect of interrupts on software pipeline execution on
message-passing architectures. In ACM, editor, FCRC ’96:
Conference proceedings of the 1996 International Confer-
ence on Supercomputing: Philadelphia, Pennsylvania, USA,
May 25–28, 1996, pages 189–196, New York, NY 10036,
USA, 1996. ACM Press.

[WHW09] Markus Wittmann, Georg Hager, and Gerhard Wellein.
Multicore-aware parallel temporal blocking of stencil codes
for shared and distributed memory. CoRR, abs/0912.4506,
2009.

[WL91] Michael E. Wolf and Monica S. Lam. A data locality
optimizing algorithm. In Programming Language Design
and Implementation, New York, NY, USA, 1991. ACM.

[Wol89] Michael J. Wolfe. More iteration space tiling. In ACM, edi-
tor, Proceedings, Supercomputing ’89, Reno, Nevada, pages
655–664, Reno, Nevada, November 1989. ACM Press.

[Won00] David Wonnacott. Using Time Skewing to eliminate idle
time due to memory bandwidth and network limitations. In
International Parallel and Distributed Processing Sympo-
sium. IEEE, May 2000.

[Won02] David Wonnacott. Achieving scalable locality with Time
Skewing. Internation Journal of Parallel Programming,
30(3):181–221, June 2002.

[YBG+12] T. Yuki, V. Basupalli, G. Gupta, G. Iooss, D. Kim, T. Pathan,
P. Srinivasa, Y. Zou, and S. Rajopadhye. Alphaz: A system
for analysis, transformation, and code generation in the
polyhedral equational model. Technical report, Technical
Report CS-12-101, Colorado State University, 2012.

[ZGG+12] Xing Zhou, Jean-Pierre Giacalone, Marı́a Jesús Garzarán,
Robert H. Kuhn, Yang Ni, and David Padua. Hierarchical
overlapped tiling. In Proceedings of the Tenth International
Symposium on Code Generation and Optimization, CGO
’12, pages 207–218, New York, NY, USA, 2012. ACM.

